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How to model a user’s behavior?

Many real-world optimization problems do not provide explicit objectives.

Examples:

- Choosing a cake for an event;

- Buying a new laptop;

- Refine the industrial production machined pieces.

Modelling choices of a user/consumer can be seen as a real world
optimisation problem involving multiple conflicting objectives
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How to model a user’s behavior?

Example: choosing the best cake

Possible objectives:

- taste;

- softness;

- aestetics.

Input features (ingredients):

- flour;

- butter;

- sugar;

- . . .

The user only sees the final cakes.

A =
{

, , , ,

}
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How to select the best item?

A: Ask the user for
ratings (e.g. 1-10)

B: Ask the user for
preferences

C: Ask the user for
choice sets

⇒ 7

⇒ 7

⇒ 4

⇒ 7

⇒ 3

≻

≻

≻

≻

≻

Given

A =
{

, , , ,
}

The user chooses

C (A) =
{

, ,
}
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How to select the best item?

Option Pros Cons

A * easy modelling * often inconsistent
ratings * noisy

B * easier for the user * can be inconsistent
preferences * many iterations

C * easiest for the user * no model available
choices in case of inconsistencies
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Choice function

Consider

- X , a finite set of items;

X =
{

, , , ,
}

- Q, the set of all (finite) subsets of X .

Q =
{ { }

, . . .,
{

,
}
, . . .,

{
, , , ,

} }
A choice function is a map C : Q → Q such that

C : A ∈ Q 7→ C (A) ∈ Q

C : A =
{ }

∈ Q 7→ C (A) =
{ }

∈ Q

Learning user’s behavior ⇒ learning choice function from history.
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Choice function - a few considerations

We model each item in A with a vector x ∈ Rnx containing its features.

Set of rejected items: R(A) = A \ C (A), for any A ∈ Q.

- If xj ∈ R(A), there is at least one object in C (A) better than xj

Incomparability: if {xj , xk} ⊆ C (A) then xj and xk are incomparable

- The user may have multiple utilities

- Lack of knowledge
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How to model choice functions?

Vector of utility functions u = [u1(x), . . . , uno (x)]
T .

Pareto-dominant option x1 Pareto-dominates x2 (x1 ≻ x2) if

i) for all j = 1, . . . , no , uj(x1) ≥ uj(x2)

ii) ∃j ∈ {1, . . . , no} s.t. uj(x1) > uj(x2)

Non-dominated Pareto set Given A = {x1, . . . , xn}, the set of
non-dominated options is

A′ = {x ∈ A : ∄x′ ∈ A s.t. x′ ≻ x}
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Pareto-rationalisable choice functions

u describes the choice function C if, for each A ⊂ X ,

- C (A) is the non-dominated set in the strong Pareto sense for u;

- R(A) is the set of dominated objects.

Note: not all choice functions are Pareto-rationalisable.
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Pareto-rationalisable choice functions: example

Example: choose best cake

- utilities: taste, aspect

- dominates

- set of non-dominated options

A′ =
{

, ,
}

Taste

Aspect

We do not observe the vector of utility functions
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An exact link between choices and utilities

Assume: latent vector of utilities u = [u1(x), . . . , uno (x)]
T .

For each A ⊂ X , we can link choices and utilities with

¬
(

min
i∈{1,...,no}

(ui (o)− ui (v)) < 0, ∀o ∈ C (A)

)
,∀v ∈ R(A), (1)(

For each v ∈ R(A), there is at least a object in C (A) not worse than v
)

min
i∈{1,...,no}

(ui (o)− ui (v)) < 0, ∀o, v ∈ C (A), o ̸= v. (2)(
For each object in C (A), there is no better object in C (A)

)
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Using the link to build a likelihood

Given a choice dataset

Dm = {(C (As),As) : for s = 1, . . . ,m}, As ⊂ X for each s,

X = [x1, x2, . . . , xt ]⊤ features associated with t objects in X

We define a likelihood

pexact(Dm|u(X )) =
m∏

k=1

pexact(C (Ak),Ak |u(X )),

where u(X ) = [u(x1),u(x2), . . . ,u(xt)]⊤ and

pexact(C (Ak),Ak |u(X )) =

{
1 if both conditions are satisfied

0 otherwise
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Case of non-Pareto rational choices

Consider o1, o2, o3, o4 with

u1

u2

x

o1

x

o2

x
o3

x o4

Assume we are given the following choices:

C ({o1, o2, o3}) = {o1, o2}, C ({o1, o2, o4}) = {o1},

These choices are not Pareto rational, pexact(Dm|u(X )) is zero.
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Likelihood accounting for errors

On the choice dataset Dm we define the likelihood

p(Dm|u(X )) =
m∏

k=1

p(C (Ak),Ak |u(X ))

=
m∏

k=1

∏
{o,v}∈C♯(Ak )

(
1−

no∏
i=1

Φ

(
ui (o)− ui (v)

σ

)
−

no∏
i=1

Φ

(
ui (v)− ui (o)

σ

))
∏

v∈R(Ak )

(
1−

∏
o∈C(Ak )

(
1−

no∏
i=1

Φ

(
ui (o)− ui (v)

σ

))

The blue part is a probabilistic relaxation of the first condition(
For each v ∈ R(A), there is at least a object in C (A) not worse than v

)
The green part is a probabilistic relaxation of the second condition(
For each object in C (A), there is no better object in C (A)

)



16/37

Choice functions Learning choices Evaluation ChoiceBO Conclusions

Non-Pareto rational choices

Consider the same objects o1, o2, o3, o4

u1

u2

x

o1

x

o2

x
o3

x o4

With the following choices:
C ({o1, o2, o3}) = {o1, o2},
C ({o1, o2, o4}) = {o1}

Probabilistic relaxation likelihood
p({o1, o2}, {o1, o2, o3}|u(X )) ≈ 0.48

p({o1}, {o1, o2, o4}|u(X )) ≈ 0.12

p(Dm|u(X )) ≈ 0.48 · 0.12 = 0.057
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ChoiceGP

Data: Dm = {(C (As),As) : for s = 1, . . . ,m}, As ⊂ X for each s;

Prior: each latent utility function in u(x) = [u1(x), . . . , uno (x)]
⊤ is

modelled as an independent GP:

ui (x) ∼ GPi (0, ki (x, x
′)), i = 1, 2, . . . , no .

Likelihood: Error accounting likelihood

p(Dm|u(X )) =
m∏

k=1

p(C (Ak),Ak |u(X ))
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ChoiceGP - Inference

Posterior: p(u(X )|Dm) =
p(u(X ))

p(Dm)

m∏
k=1

p(C (Ak),Ak |u(X ))

Model parameters:

- ARD lengthscales of each ki (·, ·);

- scale parameter σ in the likelihood.

The posterior is not a GP, its computation requires an approximation.
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ChoiceGP - Inference

Approximate p(u(X )|Dm) with variational inference.

Variational density: q(u(X )) ∼ N(µ,S), with S block-diagonal.

Find the q and the model parameters (lengthscales and σ) by maximizing

ELBO(q) =

∫
q(u(X )) log p(Dm|u(X ))du︸ ︷︷ ︸

likelihood term

−KL[q(u(X ))||p(u(X ))]︸ ︷︷ ︸
KL between priors

We approximate the likelihood term with Monte Carlo integration.
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ChoiceGP - Prediction

For a new vector of p objects X ∗ = {x∗1 , . . . , x∗p}

p(u(X ∗)|Dm) =

∫
p(u(X ∗)|u(X ))q(u(X )|Dm)du(X )

where q(u|Dm) is the approximate VI posterior.

For a new set A∗ and a possible choice C (A∗)

p(C (A∗),A∗|Dm) =

∫
p(C (A∗),A∗|u(X ∗))p(u(X ∗)|Dm)du(X

∗),

computed via Monte Carlo sampling from p(u(X ∗)|Dm).

A. Benavoli, D. Azzimonti and D. Piga. 2023. Preference Learning with Gaussian
Processes. Accepted UAI 2023 (Pittsburgh, USA)

https://www.auai.org/uai2023/accepted_papers
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A simple example

Let us create choice data from a known utility

u(x) = [cos(2x),− sin(2x)], x ∈ R.

Given the set Ak = {0, 0.5, 2.36},

u(0) = [1, 0]

u(0.5) = [0.54,−0.84]

u(2.36) = [0, 1] and

C (Ak) = {0, 2.36} 4 2 0 2 4
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

u u2
u1

We sample 200 inputs xi uniformly in [−4.5, 4.5] and evaluate u.
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A simple example

From
{
xi ,u(xi )

}200
i=1

we generate m = 150 choices from sets Ak

Ak has fixed size |Ak | = 3

choiceGP trained on
m = 150 choices

RBF with ARD for each GP

Predict u(X ∗) at X ∗

4 2 0 2 4
x

4
3
2
1
0
1
2
3
4

u

E[u1]
E[u2]

Note:

- we cannot estimate the range of u from choices;

- only Pareto-dominance is learned.



23/37

Choice functions Learning choices Evaluation ChoiceBO Conclusions

A simple example

From
{
xi ,u(xi )

}200
i=1

we generate m = 150 choices from sets Ak

Increase set size: |Ak | = 5

choiceGP trained on
m = 150 choices

RBF with ARD for each GP

Predict u(X ∗) at X ∗

4 2 0 2 4
x

10

5

0

5

10

15

u

E[u1]
E[u2]

Note:

- by allowing choices from larger sets we gather more information;

- smaller credible intervals than with |Ak | = 3.
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Latent Dimension Estimation

Until now: no was given, but if we observe only choices no is not known.

Idea: fit ChoiceGPno with increasing no .

Compare performances with Pareto Smoothed Importance Sampling
Leave-One-Out cross-validation (PSIS-LOO, Vehtari et. al., 2017)

Example:

Find the true latent dimension
(no = 2)
on the previous example.

PSIS-LOO values

d |Ak | = 3 |Ak | = 5

1 -3213 -6108
2 -69 -84
3 -80 -95
4 -91 -109
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Comparison with state-of-the-art

ChoiceNN: a neural network based method for choice learning
(Pfannschmidt and Hüllermeier, 2020)

Experiment:

- utilities DTLZ, ZTD multi-objective opt. benchmarks
- generate choices from |A| = 10 from utilities;
- object xi ∈ R6

- number of objectives given, no = 5

K. Pfannschmidt and E. Hüllermeier. 2020 Learning Choice Functions via
Pareto-Embeddings. In German Conference on Artificial Intelligence. Springer.

https://doi.org/10.1007/978-3-030-58285-2_30
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Comparison with state-of-the-art

For each test function

- 90− 10 train/test split;

- 5 MC repetitions;

- metric: A-mean

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 ZTD1 ZTD2 ZTD3 ZTD40.4

0.5

0.6

0.7

0.8

0.9

1.0

A-
m
ea

n

ChoiceNN
ChoiceGP
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Comparison with preference learning

We compare choiceGP against

- Preferential GP (PGP) (Chu and Ghahramani, 2005),

- General Preferential GP (GPGP) (Chau et al., 2022)

- GP with data augmentation (PairGP) (Chau et al., 2022)

Note:

- preference learning only allows for binary comparisons;

- in case of inconsistencies we need a forced choice;



28/37

Choice functions Learning choices Evaluation ChoiceBO Conclusions

Comparison with preference learning

Create choices from five benchmark multi-obj opt. datasets
(AM, EDM, Jura, Slump, Vehicle)

|Ak | = 2, use benchmark outputs to make {(C (Ak),Ak) : k = 1, . . . ,m}

For each Ak = {xi , xj} we can have

- C (Ak) = {xi} then xi ≻ xj

- C (Ak) = {xi , xj}, we generate preferences with

Random: coin flip: xi ≻ xj if Heads; xj ≻ xi if Tails
Maj. rule: xi ≻ xj if xi is better than xj w.r.t. majority of outputs.
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Comparison with preference learning

Average accuracy

ChoiceGP PGP GPGP PairGP

AM 0.90
maj. 0.84 0.86 0.87
rand. 0.74 0.73 0.738

EDM 0.88
maj. 0.83 0.80 0.83
rand. 0.84 0.82 0.82

Jura 0.91
maj. 0.87 0.87 0.87
rand. 0.84 0.82 0.82

Slump 0.91
maj. 0.93 0.90 0.90
rand. 0.83 0.79 0.79

Vehicle 0.93
maj. 0.89 0.90 0.90
rand. 0.80 0.80 0.80
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Bayesian Optimization on Choice data

BO: find the global maximum of an unknown expensive function.

For scalar real-valued function g the objective is xo = argmaxx∈Ω g(x)

BO makes this a sequential decision problem:

0) collect N couples D = {(xi , g(xi )) : i = 1, 2, . . . ,N};

1) create a surrogate for g from data;

2) employ acquisition function to select next candidate xN+1

3) evaluate g , add (xN+1, g(xN+1)) to D, update GP;

Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization. arXiv:1807.02811

https://arxiv.org/abs/1807.02811
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BO on Choice data

On choice data we do not observe the function.

The user is asked to choose preferred objects in a set Ak .

0) collect N choices DN = {(C (As),As) : for s = 1, . . . ,N};

1) learn choiceGP from data;

2) employ acquisition function to select next object xN+1 to compare;

3) query the agent for new choice(s), update choiceGP;
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Two acquisition functions

We consider two acquisition functions

choiceUCB: γ% Upper Credible Bound (UCB) of p(C (A∗),A∗|u∗) with
u∗ ∼ p(u∗|Dm), A

∗ = x ∪ X̂ nd and C (A∗) = {x}
Note: C (A∗) = {x} is a strong requirement.

choiceThompson: Pareto front hyper-volume increase for a posterior
realization when x is added;

Note: we use a predictive process for the posterior realization. More

A. Benavoli, D. Azzimonti and D. Piga. 2023. Bayesian Optimization For Choice
Data. In GECCO ’23. Association for Computing Machinery.

https://doi.org/10.1145/3583133.3596324


33/37

Choice functions Learning choices Evaluation ChoiceBO Conclusions

Given xnew , how to query for new choices?

Consider X̂ nd , current Pareto set implied by choices.

We would like to query a choice for A∗ = {xnew} ∪ X̂ nd .

Note:

- if X̂ nd is large (> 5) the user might have issues choosing;

- often the expensive part of the pipeline is producing the object, not
the comparison;

Given xnew , we produce the item and we query the user for choices on

- sets A∗
j of fixed size |A∗

j |;

- each set contains 5 combinations of xnew with |A∗
j |−1 items of X̂ nd .
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Experiments

We consider standard multi-objective benchmark functions:
DTLZ1, ZDT1, Kursawe

choiceUCB, choiceThompson versus Oracle with access to true utilities.

GP model: ARD Matérn, ν = 3/2;

Latent dimension: no assumed known;

Initialization:

- 20 randomly selected inputs to initialise Oracle-qEHVI.

- 10 pairs {C (Ak),Ak} of size |Ak | = 3 for ChoiceBO

Total budget: 100 iterations
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Experiments
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Conclusions

• Generalization of preference learning to choices

• Useful when it is hard to express coherent preferences

• ChoiceGP models user choices without access to latent utilities

• ChoiceBO provides a framework to give the user better choices

Future work:

- Study the case of non Pareto-rationalisable choices;

- Sparse implementation to reduce computational load.
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Javier González, Zhenwen Dai, Andreas Damianou, and Neil D Lawrence. 2017.
Preferential Bayesian optimization. In Proceedings of the 34th International
Conference on Machine Learning. Volume 70. JMLR. 1282–1291

H. Nickisch and C. E. Rasmussen. 2008. Approximations for Binary Gaussian Process
Classification. Journal of Machine Learning Research 9 2035-2078

https://doi.org/10.1145/3583133.3596324
https://doi.org/10.1145/3583133.3596324
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://www.jstor.org/stable/2332286?origin=crossref
https://www.jstor.org/stable/2332286?origin=crossref
https://doi.org/10.1007/s10994-021-06039-x
https://doi.org/10.1007/s10994-021-06039-x
https://doi.org/10.1007/s10994-021-06039-x
https://dl.acm.org/doi/10.5555/3305381.3305514
https://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf
https://www.jmlr.org/papers/volume9/nickisch08a/nickisch08a.pdf

	Main Talk
	Choice functions
	Learning choices
	Evaluation
	ChoiceBO
	Conclusions


