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 New formulation with the Clustered Lasso on the sparse simplex



CONTEXT

SPACE FILLING DESIGN OF EXPERIMENTS



Design of experiments (DOE) — General principle

 Defining a DOE = choosing points in a pre-defined parameter space

@® Each point will then be evaluated to collect the corresponding value of the outputs of interest (via an
experimental protocol, a production process observation, a numerical simulator, ...)

@ In general this evaluation is costly (time/money), which means that the DOE must be carefully
chosen

 Objective: explore the output behavior thanks to a limited number of evaluations

@® Optimize the information: identify regions of interest (safety, optimization), detect influential
parameters, quantify their impact, ...

@® Generate a DOE to build a regression model



Design of experiments (DOE) — Examples @ Safran

ARRIEL 2 HP blade (SHE)
Mechanical Analysis (~2H)
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Design of experiments (DOE) — Standard strategies

 Well-known DOE: factorial design (i.e. a grid) ./Q /'
@ Parameter discretization on n levels, budget ntifd parameters (ex: 10 params /2 lvls = 1024) xs /

aln -
@ Extensions to lower the budget (fractional, centered composite, Box-Behnken, ...) X1

 Limitations: size and underlying model assumption (i.e. linear, 2nd order poly., ...)

@ If the output does not vary according to the model, the amount of information given by the
DOE is poor

@® Very bad projection properties in general (focus for another talk)



Design of experiments (DOE) — Numerical experiments

 « Numerical experiments » introduced a fresh point of view
@® Main principles

1. Do not assume an overly simplified model

2. Ensure some DOE properties w.r.t. some possible output behavior

@® What we usually expect in numerical experiments
1. Large input variations which imply nonlinear response for the outputs

2. Very often the outputs have a low effective dimension



Design of experiments (DOE) — Numerical experiments

 « Numerical experiments » introduced a fresh point of view
@® Main principles

1. Do not assume an overly simplified model

2. Ensure some DOE properties w.r.t. some possible output behavior

@® What we usually expect in numerical experiments
1. Large input variations which imply nonlinear response for the outputs

2. Very often the outputs have a low effective dimension

Property 1
Space-filling

Property 2
Good projection
properties




Design of experiments (DOE) — Space filling?

 Fact: a random sample (Monte-Carlo) is very bad

@ Some points are too close, holes in the space

@® How to mathematically define « space-filling »?

Random - BAD Optimized - GOOD




Design of experiments (DOE) — Space filling?

@ miniMaxd =2,n=7
(radius=¢,m(X,))
O

 Family 1: Geometrical criteria

@® Minimax DOE

- Minimize the maximal distance between any point in the space and
the DOE (i.e. smallest possible holes)

@ Maximind =2,n=7
(radius=im(X,)/2)

@® Maximin DOE

- Maximize the minimal distance between points (i.e. limit cluster effect)

Courtesy of L. Pronzato



Design of experiments (DOE) — Space filling?

 Family 2: Discrepancy criteria

D, (%, X,) 2 sup nb. of x; in
Be 2 n

with Z a family of subsets of I (= 0 < D,(%4,X,) < 1)

vol(

@® Goal: have points as close as possible to the uniform distribution

@ Changing &3 yields different discrepancies

@ Point of view justified by QMC integration




Design of experiments (DOE) — Space filling?

« Koksma-Hlawka inequality (1961)

[ swda= =37 x| <V DX

® V(/): Hardy-Krause variation, independent of the chosen points

d
@ Star-discrepancy defined with subsets H 10,1;), independent of the function
=1



Design of experiments (DOE) — Space filling?

* |n practice

@ Star-discrepancy difficult to compute, bounded by extreme-discrepancy but not
practical either

@ Iwo available roads:

: | d
1. Use low-discrepancy sequences (Sobol, Halton, Faure, ...) « og()
n
2. Change subset family to get analytical expressions
13 d 2 n d 1 1 1 12
Dcent 1;(Xn) = (ﬁ) o2l {xk}i—ﬁ'—i ki — 5
k=1 i=1
~1/2
n d
v 30 TT(1+ 5 o= 3]+ 5 [omedi = 3| = 3w — fxe)
k,k'=1 i=1 |
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Design of experiments (DOE) — Space filling?

 Discrepancy is nice, but it is only defined for comparing the DOE to
the uniform distribution on the unit hypercube

Variable vans design
(CoHP SC - SAE)

 For practical applications

@® What if we need space-filling properties in more complex parameters spaces?

Only van values in the cross
are admissible

@® What if we the DOE can only be chosen among a given set of points (subsampling)?

ARRIEL 2 HP blade (SHE)

- When the distribution is not known for example (accept/reject)

- Or up to a constant (MCMC sample, related to optimal thinning)

- Given database (splitting train/test set, ...)

Only geometrical parameters
leading to a « physical » blade
are allowed



Design of experiments (DOE) — Space filling?

A promising layer of generalization can be achieved with the use of recently
introduced kernel-based methods

@ Distance between probability distributions defined via kernel-embedding of distributions (aka
maximum mean discrepancy)

@® Common discrepancies are obtained with specific kernels
@ No assumption on the distributions
1. This means we can target other continuous distributions than the uniform

2. We can also target an empirical distribution (subsampling)



QUANTIZATION WITH THE MAXIMUM
MEAN DISCREPANCY




Kernel-embedding of probability distributions

_|_ Option 1: work directly in the space of probability measures
M 1 Examples: KS, TV, KL, Hellinger, ...




Kernel-embedding of probability distributions

_|_ Option 1: work directly in the space of probability measures
M 1 Examples: KS, TV, KL, Hellinger, ...

Option 2: represent probability measures with some features




Kernel-embedding of probability distributions
J

Feature Space

o UP




Kernel-embedding of probability distributions
J

Feature Space

The dissimilarity between probability distributions is measured through the IUJQ
distance between their representation in the feature space




Kernel-embedding of probability distributions
J

Feature Space

Dissimilarity\measured only through the means



Kernel-embedding of probability distributions
J

Feature Space




Kernel-embedding of probability distributions

Gaussian and Laplace densities
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Obviously using a finite number of features will not lead
to a distance between probability distributions



Kernel-embedding of probability distributions
J

Feature Space

Dissimilarity measured through characteristic functions
Weighted distance leads to energy distance (Szekely & Rizzo 2013)



Kernel-embedding of probability distributions
J

_l_ Feature Space

General setting: take a feature map

o: Q) — F



Kernel-embedding of probability distributions
J

Feature Space




Kernel-embedding of probability distributions

+ RKHS

Instead of choosing the feature map, make it implicit and
assume that the feature space is a RKHS with a given kernel

k(z,z') = (o(z), p(z)) 7



Kernel-embedding of probability distributions




Kernel-embedding of probability distributions

The kernel mean embedding of a probability measure is defined as

Up — 4:§Npkx(€, ) — /X kz\.’(fa )dP(f)

A distance between probability measures is then given by the Maximum Mean Discrepancy

MMD(P1,P2) = ||up, — pp,||#

The reproducing property in the RKHS gives the central result

MMD?(P,P3) =

e erkx(E,€) — 2

4:§,CkX (‘Sa C) T

ek (¢, ¢

Smola et al. 2007, Song 2008, Song et al. 2009



Kernel-embedding of probability distributions

Advantages of this distance vs others
» Thanks to the RKHS, only involves expectations of kernels
> Less prone to the curse of dimensionality

>~ Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using
specific kernels

> (This Is a distance only if a characteristic kernel is used)



Quantization with the MMD

MMD?(Pq,Py) =

e erkx(E,€) — 2

f‘ﬁ,CkX (ga C) +

ek (¢, ¢

For space-filling designs, we can then just plug the MMD instead of the discrepancy

@ Standard case

- P, is the empirical measure supported by the design points

- P, is the uniform distribution on the hypercube

arg min MMD~

Zl,...,ZnERd

Specific kernels yield usual discrepancies!

(:L izléz”,uu)



Quantization with the MMD

MMD?(Pq,Py) =

e erkx(E,€) — 2

f’f,CkX (57 C) +

ek (¢, ¢

For space-filling designs, we can then just plug the MMD instead of the discrepancy

@ Standard case

® General continuous case: similar, just need to compute analytically kernel integrals

Banana

Exponential Beta

1.0

Mak & Joseph 2018

Kernel = energy distance



Quantization with the MMD

MMD?(Py, Ps) = E¢ ¢rky(€,€) — 2

f‘ﬁ,CkX (ga C) +

ek (¢, ¢

For space-filling designs, we can then just plug the MMD instead of the discrepancy

® Standard case

® General continuous case: similar, just need to compute analytically kernel integrals

® Subsampling case (quite common in practice): much harder!

21400y 2n EXN

n N
1 1
: 2
arg min MMD (n ;:1 0z, N ;:1 (5%)

NP-hard!



Quantization with the MMD

The subsampling problems writes

n n n N
. 1 2
argmin - — E E k(zi,25) — - g E k(zi,x;)
Pl ZnCAN T i i=1 j=1
Most used strategy in practice: greedy algorithms
1 N
Zik — argimax —— E ]‘C(Z, CIZ’J) Maximize the similarity with the empirical target
zeEXN N .
1=1
t N
> —  are min E A E A inimize the similarity with previous points (« repulsion ») an
t+1 dexN t _|_ 1 » N Y maximize the similarity with the empirical target
1=1 1=1



Quantization with the MMD

The subsampling problems writes

n N

arg min % sz(zz,zg) — %sz(zza%)

Lo Zn AN Ty G i=1 j=1
Most used strategy in practice: greedy algorithms

See very nice recent papers: Pronzato 2021, Teymur et al. 2021



Quantization with the MMD

The subsampling problems writes

n N

arg min % sz’(zz,zg) — %sz(zza%)

Lo Zn AN Ty G i=1 j=1
Most used strategy in practice: greedy algorithms

See very nice recent papers: Pronzato 2021, Teymur et al. 2021

Here we propose a reformulation which is convex and can be efficiently solved with
proximal algorithms



NEW FORMULATION
CLUSTERED LASSO & SPARSE SIMPLEX



Quantization with the MMD — Introducing weights

Instead of a DOE given by a subsample, focus now on a DOE given by a weighted version of
the target

ANVl ={weR": w>0,1"w=1}

N N
1 :
arg min MMD2 (Z wzdmz . N Z 5332) is the N — 1 dimensional
1=1

N—1 . .
w1i,...,WN EA i—1 canonical simplex



Quantization with the MMD — Introducing weights

Instead of a DOE given by a subsample, focus now on a DOE given by a weighted version of
the target

AN‘l—{WE[R%N' w >0 1TW=1}

N N
1 = : w >0,
arg min MMD2 (Z wZ(SxZ . N Z 55,32) is theN—. 1 dimensional
1=1

N—1
W1,...,WNEA i—1 canonical simplex

N —1
Wi, WNEA i=1 j=1 i=1 j=1
arg min wlKw—klw
WGAN_l

@ Of course here the solution is trivial by taking Vi, w;, = 1/N



Quantization with the MMD — Introducing weights

argmin w' Kw — klw
WEAN_l

@ The link with subsampling involves two additional ingredients
1. The weight vector must be sparse

2. All nonzero weights must be equal



Quantization with the MMD — Introducing weights

argmin w’ Kw — k' w
WGAN_l

® The link with subsampling involves two additional ingredients

Sparsity in the
simplex

2. All nonzero weights must be equal Clustering penalty




Quantization with the MMD — Sparsity in the simplex

argmin w' Kw — klw
WEAN_l

@ Here sparsity cannot be achieved with the standard Lasso penalty since ||w||; = 1 if w € AM~!

@ But on the simplex other norms have interesting features!
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Figure 2. Contours of 8+ [|8]|5 (left) and B+ ||8]|co (right)

Li et al. 2020



Quantization with the MMD — Sparsity in the simplex

argmin w' Kw — klw
WEAN_l

@ Here sparsity cannot be achieved with the standard Lasso penalty since ||w||; = 1 if w € AM~!

@ But on the simplex other norms have interesting features!

@ Several papers thus use either 1/||w]|| ., I/HWH%, — HWH%



Quantization with the MMD — Sparsity in the simplex

argmin w' Kw — klw
WEAN_l

@ Here sparsity cannot be achieved with the standard Lasso penalty since ||w||; = 1 if w € AM~!

@ But on the simplex other norms have interesting features!

@ Several papers thus use either 1/||w]|| ., I/HWH%, — HWH%

® For computational considerations, we follow Li et al. 2020 and use the latter

arg min wliKw—kliw — )\1||WH%
WGAN_l
—w (K-—MDw—-k'w

Still a convex problem if

A1 € [0, Apin (K)]



Quantization with the MMD — Clustering penalties

@ Clustering penalties aim at enforcing the solution of least-squares problem to have identical
components

® When the penalty increases, the solution components exhibit a group structure, with all components
equal inside a group: this clusters the solution vector, hence the name

® In practice, mainly two clustering penalties coexist:
> The Clustered Lasso

> The OSCAR norm



Quantization with the MMD — Clustered Lasso

® The Clustered Lasso (She 2010) is an extension of the Fused Lasso (Tibshirani et al. 2005), and a
particular case of the Generalized Lasso (Tibshirani & Taylor 2011)

p—1

afgﬁmiﬂ |Y = XBI5 + MBIl + A2 Y [Biv1 — Bil

arggnin IY — XB||5 + M| DB
1=1

Generalized Lasso
Fused Lasso




Quantization with the MMD — Clustered Lasso

® The Clustered Lasso (She 2010) is an extension of the Fused Lasso (Tibshirani et al. 2005), and a
particular case of the Generalized Lasso (Tibshirani & Taylor 2011)

® It enforces regression coefficients to be all equal via the penalty
p
argmin [V = XI5 + Al + A > 18— 84l
1<

(variables can be clustered into highly correlated groups, and then a single representative covariate
can be extracted from each cluster)



Quantization with the MMD — OSCAR penalty

® The OSCAR (Bondel & Reich 2007) penalty stands for Octagonal Shrinkage and Clustering Algorithm
for Regression and leads to a penalized problem of the form

/

p /\\
arg min Y — XB]13+ AM|B8]lr + A2 Y max {|Bi],|5;]} \// >

i<

Zeng & Figueiredo 2015

@ Interestingly, the OSCAR norm is a particular case of the Ordered Weighted L1 norm (OWL - Bogdan
et al 2015, Zeng & Figueiredo 2014, Zhong & Kwok 2012), which has received a lot of attention since
the introduction of the SLOPE algorithm



Quantization with the MMD — Clustered Lasso vs OSCAR?

® Which of these penalties should we use?

@ Recall that, contrary to the regression setting, we search for a solution vector in the canonical
simplex. In particular, it lies in the nonnegative orthant.



Quantization with the MMD — Clustered Lasso vs OSCAR?

® Which of these penalties should we use?

@ Recall that, contrary to the regression setting, we search for a solution vector in the canonical
simplex. In particular, it lies in the nonnegative orthant.

@ Surprisingly, we have the following result which appears to be new:

Proposition 1. Let w € ]Rgo be a N-dimensitonal vector lying in the N dimensional
nonnegative orthant. Then

;?ﬁar(w) = Q;fs(%—l)x/z,A/z( ). (5)

N
plIwll + X ) max {|wi, |w;l}

1<J

N
plIwll + X ) fwi — wl

1<J

Q0 (w)

Q5 (w)



Quantization with the MMD — Clustered Lasso vs OSCAR?

@ This equivalence result implies that in our setting both clustering penalties are equivalent

® However, when we will rewrite our problem in an amenable form suited for efficient proximal
algorithms, this equivalence will be lost

® Decomposition properties of proximal operators (to be detailed in a few moments) lead us to choose
the Clustered Lasso over OSCAR



Quantization with the MMD — Putting things together

@ The final formulation is obtained by mixing the sparsity penalty in the simplex and the Clustered
Lasso penalty:

N
argmin w' (K — M\ I)w — k' w 4+ X, Z w; — w,
weAN—1 i<

@ This is a convex problem in dimension N

@ In practice:

1. How can we efficiently solve it?

2. Scaling w.r.t. N?



Quantization with the MMD — Putting things together

® We first reformulate one last time the problem as

N
argmin w' (K — M )w—k'w+1(weAY )+ Z w; — W,
v i<j



Quantization with the MMD — Putting things together

® We first reformulate one last time the problem as

arg min
W

Convex, Convex, non-
differentiable differentiable



Quantization with the MMD — Putting things together

® We first reformulate one last time the problem as

arg min
W

Convex, Convex, non-
differentiable differentiable

® This form guides us towards the proximal gradient algorithm

min f(z) + g(z)

X

LE+1 — PIroXy, (iUk — tVf(ZIZ‘k))

1
prox, (x) = arg min (h(u) + §||U — xll%)

u



Quantization with the MMD — Putting things together

® We first reformulate one last time the problem as

arg min
W

Convex, Convex, non-
differentiable differentiable

® This form guides us towards the proximal gradient algorithm

min + g(x) Easy gradient!

X

Thy1 = ProXy, (Tp —

1
prox, (x) = arg min (h(u) + §||U — xll%)

u



Quantization with the MMD — Putting things together

® We first reformulate one last time the problem as

arg min
W

Convex, Convex, non-
differentiable differentiable

® This form guides us towards the proximal gradient algorithm

: Can we compute
mmln f(x) g(x) the proximal

operator of this?
T+l = prOth (iUk — tVf(ZIZ‘k))

1
prox, (x) = arg min (h(u) + §||U — $||§)

u



Quantization with the MMD — Putting things together

N
1 (W - AN_l) +)\22\wz —wj|

1<J

® Step1: we need a result on the proximal operator of a sum of functions



Quantization with the MMD — Putting things together

N
1 (W - AN_l) + )\QZ \wz — UJj|
1<
® Step1: we need a result on the proximal operator of a sum of functions

Fortunately, Yu 2013 Corollary 4 gives, for i permutation invariant

prOXh+||'||tv — Proxy; O proxi,,

Equivalent result for OSCAR norm, but requires more assumptions on #,
which are not satisfied for the indicator function above!



Quantization with the MMD — Putting things together

N
1 (W - AN_l) + )\QZ \wz — wj|
1<
® Step1: we need a result on the proximal operator of a sum of functions

Fortunately, Yu 2013 Corollary 4 gives, for & permutation invariant

prOXh+||'||tv — Proxy; O proxi,,

® Step 2: the first proximal operator is just a projection, given by

(Pap-1(w)), = max(0,w; —7), T := (Z W; — 1) /p, p=max{j: w; > (Z w; —1)/5}

1=1 1=1

Kyrillidis et al. 2013



Quantization with the MMD — Putting things together

N
1 (W - AN_l) +)\22\wz —wj|

1<J

® Step 3: the second proximal operator has just recently been computed!

T 3
pI'()X>\2 27{\;3 [wi—w,| HWPD (HWW >\2V)

D={xeR": Bx>0}, Bx=[r1 —22,...,ZN_1 — ZN] Lin et al. 2019
HXX: [56(1),...,27(]\[)]

UZ:N—22—|—1

Computable with the pool-adjacent violation algorithm (isotonic regression)



Quantization with the MMD — Putting things together

N
1 (W - AN_l) —|—)\22‘w2 —wj|

i<j

® Step 3: the second proximal operator has just recently been computed!

T B
prOXAQ Z?]/\;J |wi_wj| — HWPD (HWW )\QV)

D={xeR": Bx>0}, Bx=[r1 —22,...,ZN_1 — ZN] Lin et al. 2019
HXX — [:13(1), ‘.o ,LI?(N)]
UV; — N — 2@ —+ 1
Computable with the pool-adjacent violation algorithm (isotonic regression)

® Step 4 (optional): we can also accelerate the proximal gradient algorithm with Nesterov -> O(1/¢?)



Quantization with the MMD — Final algorithm

Algorithm 1 Accelerated proximal gradient algorithm for Problem (6)

Require: Gram matrix K € RY*", regularization constants A; € [0, Apin(K)], A2 > 0,
initial weights w® € R" and sequence of step sizes t;, £ = 0, ... ..
Set v = w'
for k=0,1,... do
Wit = Pan-1 (VP — 1 (2(K — M I)vF — k) > Equation (8)
w*t! = prox, . (W) > Equation (9)

k

end for




Quantization with the MMD — In practice

N
argmin w' (K — M )w—k'w+1(weAY )+ Z w; — w,
v i<j

® In practice, we use Nesterov acceleration with fixed step-size

® 4y chosen on a grid, 4, = C4,, post-treatment to reach the desired level of sparsity and such that the
weights are equal

@ K chosen as the energy-distance kernel

@ All implementation in C++ / Rcpp

@ Example on a two-dimensional mixture of 3 Gaussians with a sample of size N = 1000



Quantization with the MMD — In practice

Weights > 0

/12 fixed



Quantization with the MMD — In practice

Unique Weights

/12 fixed



Quantization with the MMD — In practice o
Weights > 0 Od

ooooo




Quantization with the MMD — In practice

Unique Weights LOg1 O




Quantization with the MMD — Scaling up

@ Computation of the proximal operators is cheap O(N log N)
® The computational bottleneck comes from the gradient computation in O(Nz)
2K — M I)w — k'
® Quantization of very large data sets (big data reduction) is thus out of reach in this setting

® A workaround is tu use a stochastic proximal gradient approach instead

> |t will be based on an approximation of the kernel



Quantization with the MMD — Random Fourier Features

® A powerful result for stationary kernels has been proposed by Rahimi & Recht 2007

@ It is simply based on Bochner’s theorem for stationary kernels which states that

k(x —y)

~

4

A

unrv

2

J

~k
1 D
D 2.

=1

€

Zu

€

/ ei“T(X_yUAc(u)du
Rd

iu’l x zuTy

= z(x)" z(y)
z(x) := [cos(uj x) ... cos(upx) sin(uj x) ..

® We have uniform convergence of the Fourier features (via Hoeffding’s inequality)

Pr

sup |z(x)'z(y)

Lz, yeM

o k’(X, Y)l >

328(

Op diam

€

De?

(M)>2€Xp( A(

d+ 2)

. sin(

)
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Quantization with the MMD — Random Fourier Features

® This Monte-Carlo estimate of the kernel is unbiased

@ It can thus be used inside the gradient to produce a stochastic gradient approximation given by
K=27"7Z, [Z]ij = zu, (z;)

thus reducing the complexity to O(ND) since Z : D X N, in practice D is around a few hundreds

@ At each iteration, new random features u; are generated

@ This implies that we must known the Fourier transform of the kernel

>~ Readily available for e.g. the popular Gaussian or IMQ kernels



Quantization with the MMD — Stochastic gradient algorithm

Algorithm 2 Accelerated proximal stochastic gradient algorithm for Problem (6)

Require: Dataset Xy = {x1,...,Xy}, Fourier transform k of kernel k, number of random
Fourier features D, regularization constants A\; € [0, Apnin(K)], A2 > 0, initial weights
w' € RY and sequence of step sizes tx, k =0, .. ..

Set vV = w

for £k =0,1,... do
Draw D i.i.d. samples uy,...,up € R® from k
Assemble matrix Z € RP*YN with i-th column equal to

cos(u; x;) ... cos(upx;) sin(u; x;) . .. Sin(ugxi)]T /VD.

Wk_'_1 — PAN—I (Vk — th((ZTZ — )\1[)Vk — ZTZ].N/N)

w* ! = prox, . (W)

k

end for




Conclusion

® New formulation of the MMD quantization problem with sparsity regularization
1. Convex formulation with a global minimum

2. Solved with proximal gradient, based on recent results for the Clustered Lasso and sparsity in the
simplex

® Stochastic version relying on RFF for large-scale problems

® The price to pay comes from the tuning of the regularization parameters



Conclusion

® New formulation of the MMD quantization problem with sparsity regularization
1. Convex formulation with a global minimum

2. Solved with proximal gradient, based on recent results for the Clustered Lasso and sparsity in the
simplex

® Stochastic version relying on RFF for large-scale problems
@ The price to pay comes from the tuning of the regularization parameters
® Open questions
1. Path algorithm for our formulation? (recent results for the Clustered Lasso)
2. Direct link between the parameters and the sparsity level?

3. Acceleration via second-order method (recent results for the Clustered Lasso)



