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What is algebraic topology?

Develop invariants that classify topological spaces up to homeomorphism.

Use tools from algebra to study topological spaces.
Understand shapes through calculations.
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A first taste
Seven Bridges of Königsberg

Is there a walk through the city that crosses every bridge exactly once?

A B

C

D

EF
G

No such walk can exist because there are more than two vertices with odd degree!
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Simple invariants
Betti numbers

Thedth Betti number counts the number of
d-dimensional holes. It can be used to
distinguish between spaces.

d = 0: connected components
d = 1: cycles
d = 2: voids

Space β0 β1 β2

Point 1 0 0

Cube 1 0 1

Sphere 1 0 1

Torus 1 2 1
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Why topology?

Smooth Manifolds

Topological Manifolds

Topological Spaces

Sets

Most of machine learning happens at the level of smooth manifolds. A topological perspective is
more general but also coarser.
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Reality is often messy…
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Persistent homology
Track topological features across different scales

Approximate a point cloud at different scales and observe how topological features appear and
disappear as the scale changes.

Vε :=
{
{x1, x2, . . .} | dist(xi, xj) 6 ε for all i 6= j

}
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Persistent homology
Storing topological features in persistence diagrams
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Persistent homology
Storing topological features in persistence diagrams

Creation
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Brief interlude

Persistent homology can also be considered as a generic way of associating a sequence of algebraic
objects, such as (Abelian) groups to other objects, such as topological spaces.

Application areas

Graphs
Point clouds
Time series
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Distances between persistence diagrams

Bottleneck distance
Given two persistence diagramsD andD ′, their bottleneck distance is defined as

W∞(D, D ′) := inf
η : D→D ′

sup
x∈D

‖x− η(x)‖∞,

whereη : D → D ′ denotes a bijection between the point sets ofD andD ′ and ‖ · ‖∞ refers to
the L∞ distance between two points inR2.

Wasserstein distance

Wp(D1, D2) :=

 inf
η : D1→D2

∑
x∈D1

‖x− η(x)‖p∞
 1

p

A Primer on Multi-Scale Topological Kernels Bastian Rieck (@Pseudomanifold) 9/24

https://twitter.com/Pseudomanifold


Stability properties of persistence diagrams
Intuitive view
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Stability properties of persistence diagrams
Formal view

LetM be a triangulable space with continuous tame functions f, g : M → R. Then the
corresponding persistence diagrams satisfy W∞(Df, Dg) 6 ‖f− g‖∞.
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Topological features in the context of machine learning

Topological features constitute an additional set of inductive biases.
Topological features are complementing machine learning algorithms.
Topological features have advantageous theoretical properties.

Examples
D. J. E. Waibel, S. Atwell, M. Meier, C. Marr and B. Rieck, ‘Capturing Shape Information with Multi-Scale Topological Loss
Terms for 3D Reconstruction’, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2022, pp. 150–159
M. Horn, E. De Brouwer, M. Moor, Y. Moreau, B. Rieck and K. Borgwardt, ‘Topological Graph Neural Networks’, International
Conference on Learning Representations, 2022
L. O’Bray∗, B. Rieck∗ and K. Borgwardt, ‘Filtration Curves for Graph Representation’, Proceedings of the 27th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD), 2021, pp. 1267–1275
B. Rieck∗ et al., ‘Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence’, Advances in Neural Information
Processing Systems (NeurIPS), vol. 33, 2020, pp. 6900–6912
M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Topological Autoencoders’, Proceedings of the 37th International Conference
on Machine Learning, 2020, pp. 7045–7054
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A generic topology-driven machine learning pipeline

Point cloud

Persistent homology Persistence diagram(s) Machine learning

Some caveats
Persistence diagrams are cumbersome to work with due to their multiset structure.
Bottleneck and Wasserstein distances may be computationally inefficient.

A Primer on Multi-Scale Topological Kernels Bastian Rieck (@Pseudomanifold) 13/24

https://twitter.com/Pseudomanifold


A generic topology-driven machine learning pipeline

Point cloud Persistent homology

Persistence diagram(s) Machine learning

Some caveats
Persistence diagrams are cumbersome to work with due to their multiset structure.
Bottleneck and Wasserstein distances may be computationally inefficient.

A Primer on Multi-Scale Topological Kernels Bastian Rieck (@Pseudomanifold) 13/24

https://twitter.com/Pseudomanifold


A generic topology-driven machine learning pipeline

Point cloud Persistent homology Persistence diagram(s)

Machine learning

Some caveats
Persistence diagrams are cumbersome to work with due to their multiset structure.
Bottleneck and Wasserstein distances may be computationally inefficient.

A Primer on Multi-Scale Topological Kernels Bastian Rieck (@Pseudomanifold) 13/24

https://twitter.com/Pseudomanifold


A generic topology-driven machine learning pipeline

Point cloud Persistent homology Persistence diagram(s) Machine learning

Some caveats
Persistence diagrams are cumbersome to work with due to their multiset structure.
Bottleneck and Wasserstein distances may be computationally inefficient.

A Primer on Multi-Scale Topological Kernels Bastian Rieck (@Pseudomanifold) 13/24

https://twitter.com/Pseudomanifold


A generic topology-driven machine learning pipeline

Point cloud Persistent homology Persistence diagram(s) Machine learning

Some caveats
Persistence diagrams are cumbersome to work with due to their multiset structure.
Bottleneck and Wasserstein distances may be computationally inefficient.

A Primer on Multi-Scale Topological Kernels Bastian Rieck (@Pseudomanifold) 13/24

https://twitter.com/Pseudomanifold


A multi-scale kernel

The first kernel between persistence diagrams; it is simple to implement and expressive.

Kernel and feature map definition

kσ(D, D ′) :=
1

8πσ

∑
p∈D, q∈D ′

exp(−8−1σ−1‖p− q‖2) − exp(−8−1σ−1‖p− q‖2)

Φ(x) :=
1

4πσ

∑
p∈D

exp(−4−1σ−1‖x− p‖2) − exp(−4−1σ−1‖x− p‖2)

Here,p := (d, c) forp = (c, d), i.e. the mirror image of a point across the diagonal.

J. Reininghaus, S. Huber, U. Bauer and R. Kwitt, ‘A stable multi-scale kernel for topological machine learning’, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4741–4748
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Universality

Theorem
The kernelk(D, D ′) := exp(kσ(D, D ′)) is universal with respect to the first Wasserstein
distance W1.

(This means that we should be able to use it with MMD!)

R. Kwitt, S. Huber, M. Niethammer, W. Lin and U. Bauer, ‘Statistical Topological Data Analysis — A Kernel Perspective’, Advances in

Neural Information Processing Systems, ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama and R. Garnett, vol. 28, 2015,

pp. 3070–3078
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Example
Feature map illustration

σ = 0.1 σ = 0.5 σ = 1.0
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More kernels
Not covered in detail

Alternative formulations exist, based on sliced Wasserstein distance calculations,1 kernel
embeddings,2 or Riemannian geometry.3

1M. Carrière, M. Cuturi and S. Oudot, ‘Sliced Wasserstein Kernel for Persistence Diagrams’, Proceedings of the 34th International
Conference on Machine Learning, ed. by D. Precup and Y. W. Teh, vol. 70, Proceedings of Machine Learning Research, 2017, pp. 664–673

2G. Kusano, K. Fukumizu and Y. Hiraoka, ‘Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor’,
Journal of Machine Learning Research 18.189, 2018, pp. 1–41

3T. Le and M. Yamada, ‘Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams’, Advances in Neural
Information Processing Systems, ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett, vol. 31, 2018,
pp. 10007–10018
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Betti curves
A simplified representation of persistence diagrams
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Betti curve

The Betti curve is a function mapping a persistence diagram to an integer-valued curve, i.e. each
Betti curve is a functionB : R→ N.
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Betti curves
Properties

Easy to calculate
Simple representation, ‘living’ in the space of piecewise linear functions
Vector space operations are possible (addition, scalar multiplication)
Distances and kernels can be defined

We obtain a simple kernel via:

k(D, D ′) :=

∫
R

BD(x)BD ′(x)dx

Open question

While this kernel can be evaluated quickly, can we do better?

B. Rieck, F. Sadlo and H. Leitte, ‘Topological Machine Learning with Persistence Indicator Functions’, Topological Methods in Data

Analysis and Visualization V, ed. by H. Carr, I. Fujishiro, F. Sadlo and S. Takahashi, Cham, Switzerland: Springer, 2020, pp. 87–101, arXiv:

1907.13496 [math.AT]
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Betti curves
Classification scenario example

Use REDDIT-BINARY data set (co-occurrence
graphs)
Calculate filtration based on vertex degree
Calculate persistence diagrams ford = 1 (cycles)
Givenp = 1, use a kernel SVM for classification
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Still state-of-the-art performance, but at a fraction of the (computational) cost of graph neural
networks (GNNs).
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Application
Classifying graphs with weighted edges

Pick function to induce a graph filtration G1 ⊆ G2 · · · ⊆ Gk = G.
Pick descriptor function f : G → R.
Evaluate f alongside the filtration.
This turns a graph G into a path.
We can treat such paths as generalised Betti curves, which we call filtration curves.

L. O’Bray∗, B. Rieck∗ and K. Borgwardt, ‘Filtration Curves for Graph Representation’, Proceedings of the 27th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (KDD), 2021, pp. 1267–1275
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Experiments
Surprisingly competitive!

Native edge weights

Method BZR_MD COX2_MD DHFR_MD ER_MD

CSM 77.63 ± 1.29 — — —
HGK-SP 60.08 ± 0.88 59.92 ± 0.66 67.95 ± 0.00 59.42 ± 0.00
HGK-WL 52.64 ± 1.20 57.15 ± 1.20 66.08 ± 1.02 66.72 ± 1.28

MLG 51.46 ± 0.61 51.15 ± 0.00 67.95 ± 0.00 60.72 ± 0.69
WL 67.45 ± 1.40 60.07 ± 2.22 62.56 ± 1.51 70.35 ± 1.01
WL-OA 68.19 ± 1.09 62.37 ± 2.11 64.10 ± 1.70 70.96 ± 0.75

GNN 69.87 ± 1.29 66.05 ± 3.16 73.11 ± 1.59 75.38 ± 1.60

FC-V 75.61 ± 1.13 73.41 ± 0.79 76.78 ± 0.69 82.51 ± 1.04

Non-native edge weights

BZR COX2 DHFR PROTEINS

84.54 ± 0.65 79.78 ± 1.04 77.99 ± 0.96 —
81.99 ± 0.30 78.16 ± 0.00 72.48 ± 0.65 74.53 ± 0.35
81.42 ± 0.60 78.16 ± 0.00 75.35 ± 0.66 74.53 ± 0.35

88.04 ± 0.70 76.76 ± 0.87 83.22 ± 0.94 75.55 ± 0.71
86.16 ± 0.97 79.67 ± 1.32 81.72 ± 0.80 73.06 ± 0.47
87.43 ± 0.81 81.08 ± 0.89 82.40 ± 0.97 73.50 ± 0.87

79.34 ± 2.43 76.53 ± 1.82 74.56 ± 1.44 70.31 ± 1.93

85.61 ± 0.59 81.01 ± 0.88 81.43 ± 0.48 74.54 ± 0.48
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More graph learning applications
Evaluating graph generative models

Graphs

Clustering coefficient

Degree distribution

Laplacian spectrum

Descriptor functions

Rd

Representations

MMD

Evaluator function

Some issues with the status quo

Kernels may not be valid (i.e. positive definite).
How to pick parameters?
Why use kernels on descriptor function representations?

L. O’Bray∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical

Solutions’, International Conference on Learning Representations, 2022, arXiv: 2106.01098 [cs.LG]
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Moving forward

Topological methods are versatile and can be calculated for different modalities.
Kernels are an integral part of modern computational topology!

Open questions

Can we use graph kernels for evaluating such models?
Are persistence diagrams the right structure to define kernels on?
Can we combine Bayesian optimisation with kernels?
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