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Synopsis

(i) brief intro to TDA (persistence homology);

(ii) large sample distribution of persistent Betti numbers (and Euler
characteristic process);

(iii) statistical inference via bootstrap for persistent Betti numbers (and Euler
characteristics);

(iv) discuss statistical insights
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TDA - persistent homology

I set of feature extraction methods;

I features are topological/geometric in nature;

Introductory texts with different foci:

Edelsbrunner and Harer (2010), Otter et al. (2017), Wasserman (2018),
Boissonnat et al. (2018), Rabadan and Blumberg (2019), Chazal and Michel
(2021), Virk (2022), and Dey and Wang (2022)

Recent surveys of applications in specific fields:

• Bukkuri et al. (2021) in oncology,
• D lotko et al. (2019) in financial time series,
• Rabadan and Blumberg (2019) in genomics and evolution,
• Davies (2022) in cyber security,
• Amézquita et al. (2020) in biology,
• Smith et al. (2021) in chemical engineering,
• Joshi and Joshi (2019) in big data in health care, and
• Salch et al. (2021) discuss TDA methods in biomedical imaging.
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Persistence diagram for multivariate normal
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• PD based on sample of size 200 from a 6-dimensional standard normal.

• Each point corresponds to a 1-dim. hole or a 2-dim. hole, respectively.

• There might be higher-dimensional features (holes)



Filtrations

• Let Br =
n⋃

i=1

Bd(xi , r) ⊂ Rd ; then

B =
{
Br : r ≥ 0

}
defines a filtration of a topological space (in this case of Rd): For any
r1 ≤ r2 · · · ≤ rN ,

Br1 ⊆ Br2 ⊆ · · · ⊆ BrN ⊆ · · · ⊆ Rd



Filter functions

Filter functions f : X→ R are often used to generate a filtration of a
topological space X via sublevel sets (or superlevel sets).

Filter function for union of balls (called C̆ech filtration), is

f (x) = DX(x) = min
i=1,...,n

d(x ,Xi ) distance function,

for {
x ∈ X : DX(x) ≤ r

}
=

n⋃
i=1

B(Xi , r).

Any function f : X→ R defines a filtration FX =
{
Xt , t ∈ R

}
of X via

Xt =
{
x ∈ X : f (x) ≤ t

}
.

Xt1 ⊆ Xt2 ⊆ · · · ⊆ XtN ⊆ · · · ⊆ X, t1 ≤ t2 ≤ . . . ≤ tN

Question is: Which filter function f is useful? (Depends on problem at hand.)
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Persistence homology

Tracking the ‘dynamics’ of the topological features (holes, homology) given by
the filtration



Finding the persistence diagram

Questions:

• What exactly is understood by a ’hole” or a ”topological feature”?

• How to computationally find birth and death times of all the ’holes’ (in any
dimension) for high-dimensional data?

‘Answers’:

• Bring in simplicial complexes (combinatorial objects; enables computation):

- approximate each top. space in filtration by an abstract simplicial complex;
- this results in a filtration of a simplicial complex

• What actually is computed are ranks of homology groups for each simplicial
complex in the filtration.

• Any change in (one of) the ranks corresponds to a birth or a death of a
feature; then find pairings;

• Persistence diagram ‘summarizes’ this dynamics

• Each point in the persistence diagram corresponds to an equivalence classes
of cycles, each of them ‘encircling’ the same ‘hole’; (k-dimensional holes are
encircled by cycles of k-dimensional simplices)
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Abstract simplicial complexes

Definition (abstract simplical complex)

Given a finite set V , an abstract simplicial complex C with vertex set V is a
collection of subsets of V such that

(i) each element of V lies in C;

(ii) D ∈ C and C ⊂ D ⇒ C ∈ C.

Each D ∈ C is called a simplex, and its dimension is |D| − 1. The dimension of
C is the maximum dimension of the simplices in C.



The C̆ech and the Vietoris-Rips filtration

Definition (C̆ech-complex)

Let (X, d) is a metric space, and let Xn = {x1, . . . , xn} ⊂ X. For r ≥ 0, the

C̆ech-complex Cr (Xn) at scale r over Xn is the abstract simplicial complex given by:

[x0, . . . , xk ] ∈ Cr (Xn) ⇔
k⋂

i=0

Br (xi ) 6= ∅.

Definition (VR-complex)

Let (X, d) be a metric space, and let Xn = {x1, . . . , xn} ⊂ X. For r ≥ 0, the
VR-complex VRr (Xn) at scale r over Xn is the abstract simplicial complex given by:

[x0, . . . , xk ] ∈ VRr (Xn) ⇔ d(xi , xj ) ≤ r ∀ 0 ≤ i ≤ j ≤ k.



The C̆ech complex

Note: The C̆ech complex Cr (X) is homotopy equivalent to the union of balls⋃n
i=1 B r (xi ). (Nerve Theorem)



The C̆ech and the Vietoris-Rips filtration

C̆ech complex at scale r (left) and VR-complex at scale 2r (right).

Important observation: VR-complex only relies on pairwise distances!

Proposition: Let Xn be a finite set of points in Rd . For any α ≥ 0,

VRr (Xn) ⊂ Cr (Xn) ⊂ VR2r (Xn).

Filtrations: The collections {Cr (Xn) : r ≥ 0} and {VRr (Xn) : r ≥ 0} are called
C̆ech and VR-filtration, respectively.

General filtration of a simplicial complex C : Increasing sequence

C1 ⊆ C2 ⊆ · · · ⊆ CN = C .

Add one simplex at a time  algorithm.



The C̆ech and the Vietoris-Rips filtration

C̆ech complex at scale r (left) and VR-complex at scale 2r (right).

Important observation: VR-complex only relies on pairwise distances!

Proposition: Let Xn be a finite set of points in Rd . For any α ≥ 0,

VRr (Xn) ⊂ Cr (Xn) ⊂ VR2r (Xn).

Filtrations: The collections {Cr (Xn) : r ≥ 0} and {VRr (Xn) : r ≥ 0} are called
C̆ech and VR-filtration, respectively.

General filtration of a simplicial complex C : Increasing sequence

C1 ⊆ C2 ⊆ · · · ⊆ CN = C .

Add one simplex at a time  algorithm.



The C̆ech and the Vietoris-Rips filtration

C̆ech complex at scale r (left) and VR-complex at scale 2r (right).

Important observation: VR-complex only relies on pairwise distances!

Proposition: Let Xn be a finite set of points in Rd . For any α ≥ 0,

VRr (Xn) ⊂ Cr (Xn) ⊂ VR2r (Xn).

Filtrations: The collections {Cr (Xn) : r ≥ 0} and {VRr (Xn) : r ≥ 0} are called
C̆ech and VR-filtration, respectively.

General filtration of a simplicial complex C : Increasing sequence

C1 ⊆ C2 ⊆ · · · ⊆ CN = C .

Add one simplex at a time  algorithm.



The C̆ech and the Vietoris-Rips filtration

C̆ech complex at scale r (left) and VR-complex at scale 2r (right).

Important observation: VR-complex only relies on pairwise distances!

Proposition: Let Xn be a finite set of points in Rd . For any α ≥ 0,

VRr (Xn) ⊂ Cr (Xn) ⊂ VR2r (Xn).

Filtrations: The collections {Cr (Xn) : r ≥ 0} and {VRr (Xn) : r ≥ 0} are called
C̆ech and VR-filtration, respectively.

General filtration of a simplicial complex C : Increasing sequence

C1 ⊆ C2 ⊆ · · · ⊆ CN = C .

Add one simplex at a time  algorithm.



The C̆ech and the Vietoris-Rips filtration

C̆ech complex at scale r (left) and VR-complex at scale 2r (right).

Important observation: VR-complex only relies on pairwise distances!

Proposition: Let Xn be a finite set of points in Rd . For any α ≥ 0,

VRr (Xn) ⊂ Cr (Xn) ⊂ VR2r (Xn).

Filtrations: The collections {Cr (Xn) : r ≥ 0} and {VRr (Xn) : r ≥ 0} are called
C̆ech and VR-filtration, respectively.

General filtration of a simplicial complex C : Increasing sequence

C1 ⊆ C2 ⊆ · · · ⊆ CN = C .

Add one simplex at a time  algorithm.



Cycles and boundaries

• Zk(K) ⊂ Ck (kernel of ∂k : Ck → Ck−1); cycles.

• Bk(K) ⊂ Ck (image of ∂k+1 : Ck+1 → Ck); boundaries of (k + 1)-chains

Hk = Zk/Bk

(k-th homology group);

rank(Hk) = k-th Betti
number

Both the solid red and the dashed green 1-chains are cycles. Their sum (or difference)

is a boundary of a 2-chain (hatched). The 1-chain in bold green is not a cycle.
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Analyses of TDA methodologies: Challenges

Conceptual:

1. What is the information contained in a persistence diagram for a given
filtration? (Topology of support? Shape of filter function (e.g. density)?
Dependence of observed data? Which one is important?. . .

2. Different filtrations result in different persistence diagrams with different
behavior and different information; different tools are needed for their
respective analysis;

3. How to compare persistence diagrams?

Technical:

1. How to control dependence of points in persistence diagram?

2. What is the population counterpart of quantities of interest?

3. What is the ‘right’ asymptotic?

4. Can we conduct (asymptotically) valid statistical inference?
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PDs for multivariate normals

PDs (1-dim holes) for samples of size 200 from a 6-dimensional normal;
diagonal covariance matrix; diagonal entries (variances) in captions
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Nested circles

PDs (1-dim holes); samples of size 200

2.0 2.5 3.0 3.5 4.0

2.0

2.5

3.0

3.5

4.0

2.0 2.5 3.0 3.5 4.0

2.0

2.5

3.0

3.5

4.0

2.0 2.5 3.0 3.5 4.0

2.0

2.5

3.0

3.5

4.0

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45



Dependent data; no signal
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One specific goal

• Gaining insight into how the sampling distribution influences the shape of
the PD  statistical inference.

See also Aaromi et al. (2021), who study the dependence of shape of PD
(using persistence landscapes) on the trace of the covariance matrix of
d-dimensional observations.
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Our set-up

• persistence diagrams are based on either the C̆ech or the VR-filtration

• X1,X2, . . . ,Xn, . . . iid from F in Rd .

We analyze topological noise based on iid data!

think of a null-model
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Signatures of PDs - or, extracting features from features

I Betti-curves (Bubenik and Kim, 2007)

I persistent Betti functions (Edelsbrunner et al., 2010)

I persistent homology transform (Curry et al., 2021)

I Euler characteristic curve

I Euler characteristic transform (Curry et al., 2021)

I persistence landscapes (Bubenik, 2015)

I persistence image (Adams et al., 2016)

I persistence surface/ persistence intensity (Chen et al., 2014)

I persistence terrace (Moon et al., 2018)

I methods based on kernel distance (Reininghaus et al., 2016)

I accumulated persistence function (Biscio and Møller, 2019)

I envelope embedding (Chevyrev et al. 2018)

I total persistence

I

We will consider (persistent) Betti functions (and Euler characteristics) in the
one-sample set-up.
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Persistent Betti curves

K = {Kt , t ∈ R} filtration of a simplicial complex, i.e. Kt ⊂ Kt′ ⊂ K for t ≤ t′.

Definition (k-th Persistent Betti curve)

For −∞ < s ≤ t <∞

βk (Ks ,Kt) = βk (s, t) = rank
Zk (Ks)

Zk (Ks) ∩ Bk (Kt)
.

We also have
βk (s, t) =

∑
(b,d)∈Dgmk

1(b ≤ s, d > t).

death

birth
s

t

∞

• βk (t) = βk (t, t) is Betti curve.
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Persistent Betti function

Remarks:

• persistent Betti function can be interpreted as multivariate survival function
in particular, it characterizes the persistence diagram

• Betti curves are determined by the marginal distributions of the persistence
diagram (distributions of birth and death times, respectively)



Asymptotics for (persistent) Betti curves for VR and C̆ech filtrations

One sample of size n and n→∞

technical challenges:

increasing n ⇒ distances between observations decrease

⇒ all birth and death times shrink to zero (assuming noise)

⇒ persistence diagram degenerates asymptotically

• to address this: rescale appropriately!

Here, critical (or thermodynamic) regime: Consider radii (filtration parameters)
of the form r = tn−1/d

Alternatively: Fix r and rescale data by n1/d .

Motivation: behavior of nearest neighbor distance
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Three different regimes

r � tn−1/d r = tn−1/d r � tn−1/d

taken from Goel et al., (2019)



Asymptotic normality of Betti numbers for VR and C̆ech in critical regime

Theorem (Krebs and WP, 2019)

Let f be a bounded Lebesgue density on [0, 1]d .

(i) Let Pn be a Poisson process on [0, 1]d with intensity nf . For p = (s, t) ∈ ∆ let

Zn,k (p) = n−1/2
(
βk
(
Cs(n1/dPn), Ct(n1/dPn)

)
− Eβk

(
Cs(n1/dPn), Ct(n1/dPn)

))
denote the centered and scaled persistent Betti numbers. For k = 0, 1, . . . , d − 1,
there exist functions σ k : ∆×∆→ [0,∞), such that for any choice
p1 = (s1, t1), . . . , pm = (sm, tm) ∈ ∆, as n→∞(

Zn,k (p1), . . . ,Zn,k (pm)
)′ → N

(
0,Σ(p1, . . . , pm)

)
in distribution,

where with X ∼ f , the covariance matrix Σ(p1, . . . , pm) ∈ Rm×m is given by

Σi,j (p1, . . . , pm) = E
[
σk
[
f

1
d (X ) (si , ti ), f

1
d (X ) (sj , tj )

]]
.

(ii) Replacing Pn in part (i) by a Binomial process Xn with density f gives a similar

asymptotic normality result as in (i), but with a covariance matrix Σ̃ ∈ Rm×m of
the form

Σ̃i,j (p1, . . . , pm) = Σi,j (p1, . . . , pm)− E
[
α
[
f

1
d (X )

(
si , ti

)]]
E
[
α
[
f

1
d (X )

(
sj , tj

)]]
,

for some function α : ∆→ R, and with Σi,j and X as in part (i).

Putting si = ti for all i = 1, . . . ,m gives the joint asymptotic normality for Betti
numbers.
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Comments

1. Recall: we are analyzing topological noise

2. Related results: Trinh (2017), Hiraoka et al. (2018), Trinh (2019), Goel
et al. (2019), Owada and Thomas (2020)

3. Novelties of our result:

I multivariate result

I no restriction on filtration parameter

I allow for sampling from a Binomial process

4. Derivations rely on the notion of stabilization (see below)

5. Centering: expected Betti number
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Convergence of expected Betti number in critical regime

Theorem (convergence of expected values in the critical regime)

(i) Let Pn be a homogeneous Poisson process on [0, 1]d with intensity n. Then, for
k = 0, 1, 2, . . . , d − 1 there exist functions γ k : ∆→ [0,∞), such that, as
n→∞,

1

n
Eβk

(
Cs(n1/dPn), Ct(n1/dPn)

)
→ γ k (s, t).

(ii) Let f be a bounded probability density on [0, 1]d with compact support.
Furthermore, let Xn be a Binomial process on [0, 1]d with density f , and let Pn

be an inhomogenous Poisson process on [0, 1]d with intensity nf . Then, for
k = 0, 1, . . . , d − 1 and with γ k (s, t) from part (i), as n→∞,

1

n
Eβk

(
Cs(n1/dXn), Ct(n1/dXn)

)
→ E

[
γk (s f 1/d (X ), t f 1/d (X ))

]
and

1

n
Eβk

(
Cs(n1/dPn), Ct(n1/dPn)

)
→ E

[
γ k

(
s f 1/d (X ), t f 1/d (X )

) ]
with X ∼ f . Setting s = t in either (i) or (ii) gives results for the Betti numbers.

See Trinh (2017), Hiraoka et al. (2018), Trinh (2019), Goel et al. (2019), Owada and

Thomas (2020).
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Discussion of asymptotic means and variances

• In general, the form of the functions γk , σk and αk is unknown (only for
k = 0 more is known).

• Note, however, that these functions are determined by the behavior under a
homogeneous Poisson sampling  they don’t depend on the sampling density;

Consequences of this observation: The dependence of the limit on the sampling
density f is through quantities of the form

Ef

[
Ψk,s,t

(
f 1/d(X )

)]
.

This will be discussed further below.



Statistical inference

For conducting statistical inference, one needs to know the (asymptotic)
distribution. So we need to

estimate the limit variance of asymptotic normal.

We will do this using a bootstrap procedure.



The bootstrap

A computational device to estimate sampling distributions.

Efron (1979)

Basic idea:

Statistical Model

• Xn is drawn from F
• F unknown
• one sample of size n from F

• sampling distribution of Tn(F )
unknown

Bootstrap World

• X∗n is drawn from F̂n = Fn(Xn)

• F̂n is known
• draw as many bootstrap samples
as desired
• estimate sampling distribution of
Tn(F ) by Tn(Fn)

• Tn(Fn) can be approximated
arbitrarily well by Monte Carlo
simulation

Standard bootstrap: Fn = empirical distribution given by Xn
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Bootstrap confidence regions for Betti numbers for VR and C̆ech filtrations

Smooth bootstrap: Draw samples from a KDE fn,h(x) based on Xn

• disadvantage: curse of dimensionality; bandwidth needs to be chosen

• advantage in TDA context: no repeated observations (w.p. 1)

− Repeated observations disregarded when building VR and C̆ech complexes

− this means: effectively sample size is smaller and random

(scaling issues; technical problems)

Recall, with F either VR or C,

Zn,k(p,F) = n−1/2
(
βk
(
Fs(n

1
d Xn),Ft(n

1
d Xn)

)
− E

[
βk
(
Fs(n

1
d Xn),Ft(n

1
d Xn)

)])
.

The corresponding bootstrap version is

Z∗n,k(p,F) = n−1/2
(
βk
(
Fs(n

1
d X∗n),Ft(n

1
d X∗n)

)
− E

[
βk
(
Fs(n

1
d X∗n),Ft(n

1
d X∗n)

)∣∣Xn

])
where X∗n ∼ f̂n,h.
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− Repeated observations disregarded when building VR and C̆ech complexes

− this means: effectively sample size is smaller and random

(scaling issues; technical problems)

Recall, with F either VR or C,

Zn,k(p,F) = n−1/2
(
βk
(
Fs(n

1
d Xn),Ft(n

1
d Xn)

)
− E

[
βk
(
Fs(n

1
d Xn),Ft(n

1
d Xn)

)])
.

The corresponding bootstrap version is

Z∗n,k(p,F) = n−1/2
(
βk
(
Fs(n

1
d X∗n),Ft(n

1
d X∗n)

)
− E

[
βk
(
Fs(n

1
d X∗n),Ft(n

1
d X∗n)

)∣∣Xn

])
where X∗n ∼ f̂n,h.



Bootstrap confidence regions for Betti numbers for VR and C̆ech filtrations

Theorem (bootstrap for persistent Betti numbers)

Let Xn be a Binomial process in Rd with intensity f . Fix k ≥ 0, and let m ≥ 1
and p1, . . . , pm ∈ ∆. If

(i) ‖f ‖2k+3 <∞,
(ii) ‖f̂n,h − f ‖q → 0 in probability (or a.s.) as n→∞ for some q > 2k + 3,

then, for F = VR and F = C,(
Zn,k(p1,F), . . . ,Zn,k(pm,F)

)′ →D N(0,Σm) as n→∞,

if and only if(
Z∗n,k(p1,F), . . . ,Z∗n,k(pm,F)

)′ →D N(0,Σm) in probab. (or a.s.) as n→∞.

Sufficient conditions for convergence in probability (for all q > 0):

f and kernel K bounded, and nh2d →∞.



Real Data Example



Real Data Example

Galaxy data (three slices): top row: β0(r); middle row: β1(r); bottom row: β1(r , r + 1)



Weak convergence of the Euler characteristic process

Theorem (Krebs & WP, 2021, Thomas and Owada, 2021)

Suppose that f can be approximated uniformly by a sequence of blocked

density functions on [0, 1]d of the form fm =
∑md

i=1 bi1Bi with blocks Bi of the
form Bi = [a1, b1]× · · · × [ad , bb] such that for all i = 1, . . . , d one has
c 1

m
≤ bi − ai ≤ C 1

m
for some c,C > 0. Then, for a Poisson sampling scheme

with intensity nf , as n→∞,

νn ⇒ G weakly, in D[0,T ],

where D[0,T ] denotes Skorohod space, and G is a mean zero Gaussian process
on [0,T ] with covariance of the form

Cov(G(s),G(t)) = E
[
γ(f (X )

1
d (s, t))

]
.

where X ∼ f . A similar result holds for a Binomial sampling scheme (with
density f ), where the covariance function changes to

Cov(G(s),G(t)) = E
[
γ(f (X )

1
d (s, t))

]
− E

[
α(f (X )

1
d s)
]
E
[
α(f (X )

1
d t)
]

for some functions α : ∆×∆→ R, γ : ∆×∆→ [0,∞).



How does persistence diagram depend on sampling density?

Recall:

• Limits of expected values and limit variances all depend on f through
quantities of the form ∫

X
Ψ(f 1/d(x)) f (x)dx

for some functions Ψ not depending on f .

Writing ∫
X

Ψ(f 1/d(x)) f (x)dx = EΨ
(
f 1/d(X )

)
,

we see that this value

depends on f only through the distribution of f (X ), where X ∼ f .

See Vishwanath et al. (2020)
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How does persistence diagram depend on sampling density?

What is this distribution? The survival function of Y = f (X ) with X ∼ f is

Sf (t) = Pf

(
f (X ) ≥ t

)
=

∫
Γ(λ)

f (x)dx = F
(
Γ(t)

)
,

where Γ(t) =
{
x : f (x) ≥ t

}
(superlevel set of f ); and F is distribution with

density f .

Sf = Sg

⇒

same asymptotic behavior of persistent Betti function (and Euler characteristic)



How does persistence diagram depend on sampling density?

When is Sf = Sg?
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How does persistence diagram depend on sampling density?
 

 

Excess mass function

We have: Sf = Sg ⇔ Ef = Eg ⇔ Leb(Γf (λ)) = Leb(Γg (λ)) ∀ λ

E.g. f and g its monotonically decreasing rearrangement satisfy this!



Bandwidth selection for TDA



Bandwidth selection for TDA



Some comments on the proof of the above results

Proofs heavily rely on the notion of stabilization of the add-one cost function.

• X = set of all finite (multi) sets of Rd

• H : X → R (such as Betti number or Euler characteristic)

Definition (add-one cost)

For z ∈ Rd , the add-one cost function (for H) is

Dz(X) = H(X ∪ {z})− H(X).
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Examples: add-one cost

Example 1: Let

• H(X) = |Sk(X)| = number of k-simplices in VRr (X) (for some fixed r > 0);

• z = 0;

• ψ(x0, x1, . . . , xk) = filtration time of σ = [x0, x1, . . . xk ].

Then
D0(X) =

∑
{xi1 ,...,xik }⊂X

1
(
ψ(0, xi1 , . . . , xik ) ≤ r

)
.

Example 2: Let

• H(k;X) = length of k-NN graph over X.

• z = 0;

• kNN(x ,X) = set of k-nearest neighbors in X of x

Then,
D0(X) =

∑
x∈X

d(0, xj)1
(
0 ∈ kNN(x ,X); x ∈ kNN(0,X)

)
.
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Stabilization

Definition (weak stabilization)

A functional H : X → R is weakly stabilizing on a locally finite point process Y
in Rd , if there exists a random variable ∆∞, such that, for any sequence
{Bn}n≥1 of (measurable) sets satisfying Bn → Rd as n→∞, we have

Dz(Y ∩ Bn)→ ∆∞ a.s. as n→∞.

Definition (strong stabilization)

A functional H : X → R is strongly stabilizing on a locally finite point process
Y in Rd , if there exists random variables S (radius of stabilization) and ∆∞
such that, for z ∈ Rd , with probability 1,

Dz

(
(Y ∩ BS(z)) ∪ A

)
= ∆∞ for all A finite with A ⊂ Rd \ BS(z).

• Clearly: strong stabilization ⇒ weak stabilization;
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Comments

• ‘stabilization’ formalized in Penrose and Yukich (2001); ideas go back to
Kesten and Lee (1996)

• H stabilizes  difference operator determined by ‘local’ information
 control of dependence

• adding moment conditions  limit theorems



Examples

Example 1: Simplex counts:

D0(Y ∪ Bn) =
∑

{Xi1
,...,Xik

}⊂Bn

1
(
ψ(0,Xi1 , . . . ,Xik ) ≤ r

)
.

(Recall : Ψ(σ) is filtration time, and we consider filtration VRr .)

Consider strong stabilization criterion.

Question to answer: Are there random variables S and ∆∞ = ∆∞(r), such

that for all finite A ⊂
(
BS(z)

){
,

D0

(
(Y ∩ BS(z)) ∪ A

)
= ∆∞(r) a.s.?

Observe:

d(0,A) > 2r ⇒ points in A cannot be part of a simplex containing 0

⇒ S = 2r is a radius of stabilization.

Note: S is not random; holds for both VR and C̆ech complex!

• this translates to Euler characteristic (as alternating sum of simplex counts)
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Examples

Example 2: Length of k-NN graph; d = 2 (for simplicity)

Again, we show strong stabilization; here stabilization radius is random.

Better control of the tail behavior of the stabilization radius

⇒ stronger results



A key technical result

A key ingredient for the proofs of bootstrap validity:

Proposition

Let Xn and Yn be Binomial processes with densities f and g , respectively, and
suppose that ‖f ‖p <∞ for p ≥ 2. Further let ψ be strongly stabilizing over
Xn. Then there exists a coupling between Xn and Yn such that

sup
n∈N

Var
[ 1√

n

[(
ψ
(
n1/dYn

)
− ψ

(
n1/dXn

)]]
≤ γ

(
‖f − g‖p

)
,

where the rate function γ : R+ → R is increasing with limδ→0 γ
(
δ
)

= 0 and
depends only on f and p.

This applies to both persistent Betti numbers and Euler characteristic
(pointwise)
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Another key ingredient - the Geometric Lemma

Lemma (Corollary of Hiraoka et al. (2018), Lemma 2.11)

Let A ⊆ B be two finite point sets of Rd . Then, with s ≤ t,∣∣∣βk(Fs(n
1/dB),Ft(n

1/dB)
)
− βk

(
Fs(n

1/dA),Ft(n
1/dA)

)∣∣∣
≤

q+1∑
j=q

∣∣Sj(Ft(B) \ Sj(Ft(A)
∣∣.
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Back-up slides



The Euler characteristic

Recall: The Euler characteristic χ(K) of a simplicial complex K is defined as

χ(K) =
∞∑
k=0

(−1)knk (K),

where nk (K) denotes the number of k-simplices in K .

In particular, for a polyhedron
in Rd ,

χ(P) = #{vertices} −#{edges}+ #{faces}.

In general: dim(K) = d ⇒ sum in the definition of the Euler characteristic is finite.

Euler characteristic is a topological invariant.

Relation to Betti numbers:

χ(K) =
∞∑
k=0

(−1)kβk (K).

(This follows from observing that βk (K) = |S+
k (K)| − |S−k+1(K)|, with S±k (K)

positive/negative simplices in filtration.)

Advantages: Easier to compute - no need to find persistence diagram, just count

number of simplices.
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Euler characteristic and the Euler characteristic curve

Applications:

Kerscher (2000); Kilner et al. (2005), Scholz et al. (2012); Khanamiri et al.
(2018); Amézquita et al. (2020), Yen and Cheong (2021)

Various contexts: porous matter; astronomy; expected Euler characteristic
heuristic; VR-complex and biological shapes;. . .

Theory and methodology related to our work:

Decreusefond et al. (2014), Bobrowski and Mukherjee (2015), Thomas and
Owada (2021)



Weak convergence of the Euler characteristic process

Again, we consider

• VR and C̆ech filtrations

• Xn either Binomial or Poisson point process

• critical regime

The Euler characteristic process: With F either VR or C:

νn(t) =
1√
n

(
χ(Ft(n

1
d Xn))− E

[
χ(Ft(n

1
d Xn))

])
, t ∈ [0,T ].
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Weak convergence of the Euler characteristic process

Theorem (Krebs & WP, 2021, Thomas and Owada, 2021)

Suppose that f can be approximated uniformly by a sequence of blocked

density functions on [0, 1]d of the form fm =
∑md

i=1 bi1Bi with blocks Bi of the
form Bi = [a1, b1]× · · · × [ad , bb] such that for all i = 1, . . . , d one has
c 1

m
≤ bi − ai ≤ C 1

m
for some c,C > 0. Then, for a Poisson sampling scheme

with intensity nf , as n→∞,

νn ⇒ G weakly, in D[0,T ],

where D[0,T ] denotes Skorohod space, and G is a mean zero Gaussian process
on [0,T ] with covariance of the form

Cov(G(s),G(t)) = E
[
γ(f (X )

1
d (s, t))

]
.

where X ∼ f . A similar result holds for a Binomial sampling scheme (with
density f ), where the covariance function changes to

Cov(G(s),G(t)) = E
[
γ(f (X )

1
d (s, t))

]
− E

[
α(f (X )

1
d s)
]
E
[
α(f (X )

1
d t)
]

for some functions α : ∆×∆→ R, γ : ∆×∆→ [0,∞).



Discussion of weak convergence of Euler characteristic process

• The form of the functions γk , σk and αk is not well understood.

• These functions are determined by the behavior under a homogeneous
Poisson sampling  they don’t depend on the sampling density;

• The dependence of the limit on the sampling density f is through quantities
of the form

Ef

[
Ψk,s,t f

1/d(X )
]
.

This will be discussed further below.

• We do not have a process-level result for the persistence Betti numbers!

• As for persistent Betti numbers, process is centered by its expected value.
Does the expected value converge to a limit?
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Expected value of the Euler characteristic

Proposition (Bobrowski and Mukherjee, 2015; Thomas and Owada, 2021)

Let f be a density w.r.t. uniform measure on an m-dimensional manifold X
embedded in Rd , and assume f to be bounded. Furthermore, let Pn be a
Poisson process with intensity nf . Then

(i)

1

n
Eχ(Ct(n1/mPn))→

m∑
k=1

(−1)kck(t) as n→∞,

where the non-negative ck(t) are of the form ck(t) =
∫
X Ψk,t(f (x)) f (x) dx

for some functions Ψk,t , k = 0, 1, . . . ,m not depending on f . A similar
result holds for Pn replaced by a Binomial process Xn with density f .

(ii) If f is a density on Rd , then

1

n
Eχ(VRt(n

1/dPn))→
∞∑
k=1

(−1)kdk(t) as n→∞,

where dk(t) are of the form dk(t) =
∫
X Ψ̃k,t(f (x)) f (x) dx for some

functions Ψ̃k,t , k = 0, 1, . . . not depending on f .



Bootstrapping the Euler characteristic process

Again, smooth bootstrap:

• N ∼ Poiss(n)

• X∗n = (X ∗1 , . . . ,X
∗
n ),X ∗i ∼iid f̂n (density estimator - not necessarily KDE)

• P∗ = (X ∗1 , . . . ,X
∗
N)

With F being either VR or C, let

F∗n,t being either Ft(n
1/d(X∗n)) or Ft(n

1/dP∗n ).

Define bootstrap version of Euler characteristic process:

ν∗n (t) =
1√
n

(
χ(K∗n,t)− E∗

[
χ(K∗n,t)

])
, t ∈ [0,T ].



Pointwise bootstrap for the Euler characteristic curve in the critical regime

First we discuss point-wise results:

Theorem (Krebs & WP, 2021)

Let f be a density on [0, 1]d and let (f̂n : n ∈ N) be a sequence of density
estimators with the property that limn→∞ ‖f̂n − f ‖∞ = 0 a.s. (in probability).
Then, for ν∗n based on bootstrap samples drawn from f̂n,

‖f̂n − f ‖−1/2
∞ · sup

t∈[0,T ]

W1(ν∗n (t), νn(t)) = O(1) a.s. (in probability),

where W1 is the 1-Wasserstein distance.

Furthermore, for each t ∈ [0,T ]{
‖f̂n − f ‖1/2

∞ + n−1/2}−1 · dK (ν∗n (t), νn(t)) = O(1) a.s. (in probability),

where dK denotes Kolmogorov-distance.

E.g.: For f̂n = f̂n,h a KDE with p-th order kernel:

‖f̂n,h − f ‖∞ = O
(( log n

n

)p/(d+2p))
a.s.
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Bootstrap for the Euler characteristic process in the critical regime

Now we consider a process-level result. For simplicity, smooth bootstrap based
on the KDE:

Theorem (Krebs & WP, 2021)

For either the VR or the C̆ech filtration constructed over either a (rescaled)
Binomial process with density f on [0, 1]d , or a (rescaled) Poisson process with
intensity nf . Suppose that for some p > d ,

• f is p times continuously differentiable;

• bootstrap samples are based on a KDE f̂n,h, based on a p-th order kernel;

Then, for any fixed T > 0,

W
D[0,T ]
1

(
ν∗n , νn

)
= O

(
(log n)α n−β

)
,

where 1
3
< α = 2p

4d+2p
< 1 and 0 < β = 3p

4d+8p
− 1

4
< 1

8
, and where W

D[0,T ]
1

denotes the 1-Wasserstein distance on the Skorohod space D[0,T ].
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Discussion of the results

• Above results imply convergences in law  bootstrap works;

• Above results come with rates of approximation;

• Bootstrap results are based on bounds for

W1(νn,f , νn,g ) and dK (νn,f , νn,g )

in terms of distances between f and g , where νn,f and νn,g denote the Euler
characteristic process for samples from f and g , respectively. (See below.)
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A key technical result

In case of the Euler characteristic (with finite stabilization radius(!)), we have a
stronger result:

Theorem (Approximating property in the Wasserstein-Kantorovich
distance)

Let f be an essentially bounded density on [0, 1]d , r ∈ R+, and g ∈ B∞(f , r).
There are coupled Poisson processes (Pn,Qn) with intensities (nf , ng) and
coupled binomial processes (Xn,Yn) with densities f , g , respectively, and a
constant C0,f ∈ R+ depending on f and r but not on g (as long as
g ∈ B∞(f , r)), such that

sup
n

sup
t∈[0,T ]

Var(νf ,n(t)− νg,n(t)) ≤ C0,κ‖f − g‖∞.

In particular,

sup
n

sup
t∈[0,T ]

W1(νf ,n(t), νg,n(t)) ≤ C0,κ‖f − g‖1/2
∞ .
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Filter functions

Union of balls with midpoints at the data points Xn = {X1, . . . ,Xn} are
sublevel set of the distance function dXn (x):

n⋃
i=1

B(r ;Xi ) =
{
dXn (x) ≤ r

}
where B(r ;Xi ) = closed ball of radius r and midpoint Xi , and

dXn (x) = inf
{
‖x − Xi‖, i = 1, . . . , n

}
.

More generally: If a persistence diagram is based on the sublevel set filtration
of the form Ff = {f −1((−∞, t]), t ∈ R}, then we call f a filter function.
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