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Constrained GPs



Constrained GPs

GPs form a flexible prior over functions [Rasmussen and Williams, 2005]:

■ prediction intervals
■ ■ · · · ■ samples

- - Boundedness condition

Y ∈ [0, 1]

↓ Monotonicity condition

Y(x′) ≤ Y(x), ∀ x′ ≥ x.
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Finite-dimensional approximation of GPs

■ smooth function Y

■ piecewise linear proxy Ym

Note that:

· If ξi, ξi+1 ∈ [0, 1], then

Ym(0.5) ∈ [0, 1].

· Or if ξi < ξi+1, then

ξi < Ym(0.5) < ξi+1.

Pro: imposing constraints over knots is enough [Maatouk and Bay, 2017]:

the function Ym is ↑ and ∈ [0, 1]
⇔ the sequence ξ is ↑ and ∈ [0, 1].
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Finite-dimensional approximation of GPs

· Let YS be the finite-dimensional GP with an ordered set of knots:

S = {t0, . . . , tm}, with 0 = t0 < · · · < tm = 1,

such that

YS(x) =
m∑

j=1

Y(tj)ϕj(x), (1)

where x ∈ [0, 1], Y ∼ GP(0, kθ), and ϕj : [0, 1] 7→ R are (asymmetric) hat basis
functions.
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Finite-dimensional approximation of GPs

· Then, for regression tasks under inequality constraints, we have

YS(x) =
m∑

j=1

ξjϕj(x), s.t.

{
YS(xi) + εi = yi (regression conditions),

l ≤ Λξ ≤ u (linear inequality conditions),
(2)

where xi ∈ [0, 1], yi ∈ R for i = 1, . . . , n, and

- ξj = YS(tj) = Y(tj) for j = 1, . . . ,m, i.e. ξ = [ξ1, . . . , ξm]
⊤ ∼ N (0,Σθ)

with covariance matrix Σθ = (kθ(tj, tj′))1≤j,j′≤m

- εi ∼ N
(
0, τ 2), for i = 1, . . . , n, with noise variance τ 2

- (Λ, l, u) define the ineq. constraints. For instance, for the case of
monotonicity, we have
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Finite-dimensional approximation of GPs

· Uncertainty quantification on Ym then relies on drawing samples of ξ subject
to interpolation and inequality constraints, i.e. (if rank(Λ) = m) simulating
from a truncated Normal distribution [López-Lopera et al., 2018]:

Λξ|{Φξ + ε = y, l ≤ Λξ ≤ u} ∼ T N (Λµc,ΛΣcΛ
⊤, l, u), (3)

where µc,Σc are the parameters of the (Normal) distribution of ξ|{Φξ + ε}:

K = ΦΣΦ⊤ + τ 2I, µc = ΣΦ⊤K−1y, Σc = Σ−ΣΦ⊤K−1ΦΣ. (4)

∗ Samples are obtained via Monte Carlo (MC) or Markov Chain MC (MCMC):

- e.g. Hamiltonian Monte Carlo (HMC) [Pakman and Paninski, 2014]
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The maximum a posteriori (mode) function in 1D

· Let ξ̂ be the mode that maximises the pdf of ξ|{Φξ + ε = y, l ≤ Λξ ≤ u}:

ξ̂ = argmax
ξ s.t. l≤Λξ≤u

{−[ξ − µc]
⊤Σ−1

c [ξ − µc]}, (5)

with ξ̂ = [ξ̂1, . . . , ξ̂m]
⊤.

· The MAP estimate of YS is given by

ŶS(x) =
m∑

j=1

ξ̂jϕj(x). (6)

Pro:
- ŶS can be used as a point estimate

- Easy and fast calculations

- Convergence to the spline solution as
m → ∞ [Bay et al., 2016]
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The maximum a posteriori (mode) function in 1D

· Con: the cost of YS increases as d increases.

YS(x) =
m1,...,md∑
j1,...,jd=1

[ ∏
p=1,...,d

ϕ
(p)
jp (xp)

]
ξj1,···,jd , s.t.

YS (xi) + εi = yi,

ξ ∈ C.
(7)
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· This drawback can be mitigated by considering:

- a “smarter” construction of rectangular grids of knots thanks to the
asymmetric construction of the hat basis functions

- and/or further assumptions for complexity simplification
→ e.g. inactive variables
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Convergence to the spline solution

Setting:

· I: set of functions interpolating the data (noise-free case).

· S: a d-dimensional grid such that, for each dimension, 1D knots are
dense in [0, 1].

· H: RKHS associated to Y

Theorem (Bay, Grammont, Maatouk) Bay et al. [2016, 2017]

Under some technical conditions

Ŷm1,...,md → Yopt,

uniformly on [0, 1]d, with

Yopt = argmin
f ∈H∩C ∩I

||f ||H.
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The MaxMod algorithm



The MaxMod algorithm in 1D

· Let ŶS be the MAP function with an ordered set of knots:

S = {t0, . . . , tm}, with 0 = t0 < · · · < tm = 1.

· Here, we aim at adding a new knot t in S (where?)

· To do so, we aim at maximising the total modification of the MAP:

IS(t) =
∫
[0,1]

(
ŶS ∪ t(x)− ŶS(x)

)2
dx. (8)

· The integral in (8) has a closed-form expression.

Algorithm MaxMod (maximum modification of the MAP) in 1D

Input parameters: the initial subdivision S(0) ∈ S.
Sequential procedure: for κ ∈ N, do:
1: Set t⋆κ+1 ∈ [0, 1] such that

IS(κ) (t⋆κ+1) ≥ sup
t∈[0,1]

IS(κ) (t)

2: S(κ+1) = S(κ) ∪ t⋆κ+1.
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The MaxMod algorithm in 1D

1D example under boundedness and monotonicity constraints

MAP estimate conditional sample-path

• training points + knots ■ MAP estimate

■ predictive mean ■ 90% confidence intervals
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The MaxMod algorithm in higher dimensions

· Let ŶJ ,S be the MAP function with |J | active variables and ordered sets of
knots SJ for J ⊆ {1, . . . ,D}.

· Then, the criterion to maximise is given by

IJ ,S(i, t) =


1

NS,J ,i

∫
[0,1]d

(
ŶJ , S ∪i t(x)− ŶJ , S(x)

)2
dx if i ∈ J ,

1
NS,J ,i

∫
[0,1]d+1

(
ŶJ∪{i}, S + i(x)− ŶJ , S(x)

)2
dx if i ̸∈ J ,

(9)

where NS,J ,i is the increase of the number of basis functions.

- F. Bachoc, A. López-Lopera, and O. Roustant. Sequential construction and dimension
reduction of GPs under inequality constraints. SIAM J. on Maths. of Data Science, 2022.
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The MaxMod algorithm in higher dimensions

2D example under monotonicity constraints

Evolution of the MaxMod algorithm using f (x) = 1
2 x1 + arctan(10x2)
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Convergence of MaxMod

Theorem [Bachoc et al., 2022]

Under some technical conditions, as m → ∞,

ŶMaxMod,m → Yopt,

uniformly on [0, 1]d, with

Yopt = argmin
f ∈H∩C ∩I

||f ||H.

Remarks

· A neighbourhood penalty term has been added to the criterion. Then, it
is proved that the sequence of knots generated by MaxMod is dense.

· The proof is technical and the result rather... minimal.
Perspective: show some expected behaviour observed in practice about
the detection of most influential variables and the concentration of knots
at locations where the function varies the most.
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The MaxMod algorithm in higher dimensions

· The constrained GP is tractable depending on |J | (nb of active variable).

· According to numerical tests, our framework is limited to |J |≤ 5.

· Therefore, further assumptions are required to scale the model:

- e.g. additive structures
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Additive GP predictions using (left) the unconstrained GP mean, (center) the cGP
mode and (right) the cGP mean via HMC. The constrained model accounts for both
componentwise convexity and monotonicity conditions along x1 and x2, respectively.
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Extension to additive functions



Additive GPs

· In high dimension, many statistical regression models are based on additive
structures of the form:

y(x) = y1(x1) + · · ·+ yd(xd). (10)

· Then GP priors can be placed over y1, . . . , yd [Durrande et al., 2012]

Yi ∼ GP(0, ki),

for i = 1, . . . , d. Taking Y1, . . . ,Yd as independent GPs, the process

Y(x) = Y1(x1) + · · ·+ Yd(xd)

is also a GP and its kernel is given by

k(x, x′) = k1(x1, x′
1) + · · ·+ kd(xd, x′

d). (11)
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Finite-dimensional approximation of additive GPs

· For the constrained case, we can approximate Yi by a finite-dimensional GP:

Yi,Si(xi) =

mi∑
j=1

ξi,jϕi,j(xi),

with one-dimensional subdivision Si, and mi knots.

· We let S = (S1, . . . , Sd). The finite-dimensional GP is written,

YS(x) =
d∑

i=1

Yi,Si(xi) =
d∑

i=1

mi∑
j=1

ξi,jϕi,j(xi), (12)

where ξi,j = Yi(t
(Si)
(j) ) and ϕi,j : [0, 1] 7→ R are asymmetric hat basis functions.

· One can note that the total number of knots is given by m = m1 + · · ·+ md.
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Finite-dimensional approximation of additive GPs

· Observe from (12) that, since ξi,j, for i = 1, . . . , d and j = 1, . . . ,mi, are
Gaussian distributed, then Yi,Si is a GP with kernel given by

k̃i(xi, x′
i) =

mi∑
j=1

mi∑
κ=1

ϕi,j(xi)ϕi,κ(x′
i)ki(t

(Si)
(j) , t(Si)

(κ) ). (13)

Moreover, YS is a GP with kernel k̃(x, x′) =
∑d

i=1 k̃i(xi, x′
i).

· We let Σi = ki(Si, Si) be the mi × mi covariance matrix of ξi.
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Finite-dimensional approximation of additive GPs

· We consider the componentwise constraints Yi,Si ∈ Ei, i = 1, . . . , d such that

Yi,Si ∈ Ei ⇔ ξi ∈ Ci (14)

where ξi = [ξi,1, · · · , ξi,mi ]
⊤ and Ci = {c ∈ Rmi : li ≤ Λic ≤ ui}.

· Examples of constraints are monotonicity and componentwise convexity.

· Given the observations and the constraints, the MAP estimate is given by

ŶS(x) =
d∑

i=1

mi∑
j=1

ξ̂i,jϕi,j(xi). (15)

20



Finite-dimensional approximation of additive GPs

· As in (5), the vector ξ̂ = [ξ̂⊤
1 , . . . , ξ̂⊤

d ]⊤ with ξ̂i = [ξ̂i,1, . . . , ξ̂i,mi ]
⊤ is given by

ξ̂ = argmin
ξ=(ξ⊤

1 ,...,ξ⊤
d )⊤

li≤Λiξi≤ui,i=1,...,d

(ξ − µc)
⊤Σ−1

c (ξ − µc), (16)

where µc = [µ⊤
c,1, . . . ,µ

⊤
c,d]

⊤ is the m × 1 vector with block i, and (Σc,i,j)i,j is
the m × m matrix with block (i, j), given by

µc,i = ΣiΦ
⊤
i

[( d∑
p=1

ΦpΣpΦ
⊤
p

)
+ τ 2In

]−1

yn, (17)

Σc,i,j = 1i=jΣi −ΣiΦ
⊤
i

[( d∑
p=1

ΦpΣpΦ
⊤
p

)
+ τ 2In

]−1

ΦjΣj. (18)

Remarks:

· Σc,i,j involves contributions of the cross-covariances, as the interpolation
constraints ”breaks” the independence of the 1D GPs.

· Computational speed-up can be done for m ≪ n (matrix inv. lemma).
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Additive MaxMod algorithm

· Consider an additive cGP model that uses only a subset J ⊆ {1, . . . , d} of
active variables.

· Its mode function ŶS, from R|J | to R, by, for x = (xi; i ∈ J ),

ŶS(x) =
∑
i∈J

mi∑
j=1

ξ̂i,jϕi,j(xi). (19)

· We measure this benefit by the squared-norm modification of the cGP mode

IS,i⋆ =

∫
[0,1]|J |+1

(
ŶS,i⋆(x)− ŶS(x)

)2
dx for i⋆ ̸∈ J , (20)

IS,i⋆,t =

∫
[0,1]|J |

(
ŶS,i⋆,t(x)− ŶS(x)

)2
dx for i⋆ ∈ J . (21)

· Both (20) and (21) have analytic expression assuming xi ∼ Uniform(0, 1) for
i = 1, . . . , d (see López-Lopera et al. [2022]), where the computational cost is
linear with respect to m =

∑
i∈J mi.
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Extension to additive functions

· For a new variable i⋆ ̸∈ J , the new mode function is

ŶS,i⋆(x) =
∑
i∈J

mi∑
j=1

ξ̃i,jϕi,j(xi) +
2∑

j=1

ξ̃i⋆,jϕi⋆,j(xi⋆)

· We let ϕi⋆,1(u) = 1 − u and ϕi⋆,2(u) = u for u ∈ [0, 1].

Proposition (Computation of IS,i⋆ )

We have

IS,i⋆ =
∑
i∈J

mi∑
j,j′=1

|j−j′|≤1

ηi,jηi,j′E
(Si)
j,j′ −

∑
i∈J

( mi∑
j=1

ηi,jE
(Si)
j

)2

+
η2

i⋆

12
+

(∑
i∈J

mi∑
j=1

ηi,jE
(Si)
j −ζi⋆

2

)2

,

where ηi,j = ξ̂i,j − ξ̃i,j, ηi⋆ = ξ̃i⋆,2 − ξ̃i⋆,1, ζi⋆ = ξ̃i⋆,1 + ξ̃i⋆,2, E(Si)
j :=

∫ 1
0 ϕi,j(t)dt

and E(Si)
j,j′ :=

∫ 1
0 ϕi,j(t)ϕi,j′(t)dt with explicit expressions in Lemma 1 [López-Lopera

et al., 2022, Appendix A.3]. The matrices (E(Si)
j,j′ )1≤j,j′≤mi are 1-band and the

computational cost is linear w.r.t. m =
∑

i∈J mi.
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Additive MaxMod algorithm

· For a new t added to Si⋆ with i⋆ ∈ J , the new mode function is

ŶS,i⋆,t(x) =
∑
i∈J

m̃i∑
j=1

ξ̃i,jϕ̃i,j(xi),

where m̃i = mi for i ̸= i⋆, m̃i⋆ = mi⋆ + 1, ϕ̃i,j = ϕi,j for i ̸= i⋆, and ϕ̃i⋆,j is
obtained from Si⋆ ∪ {t} as in Proposition 1.

Proposition (Computation of IS,i⋆,t)

For i ∈ J \{i⋆}, let S̃i = Si. Let S̃i⋆ = Si⋆ ∪ {t}. Recall that the knots in Si⋆ are
written 0 = t(Si⋆ )

(1) < · · · < t(Si⋆ )

(mi⋆ ) = 1. Let ν ∈ {1, . . . ,mi⋆ − 1} be such that

t(Si⋆ )

(ν) < t < t(Si⋆ )

(ν+1). Then, with a linear cost w.r.t. m̃ =
∑

i∈J m̃i, we have

IS,i⋆,t =
∑
i∈J

m̃i∑
j,j′=1

|j−j′|≤1

η̄i,jη̄i,j′E
(S̃i)
j,j′ −

∑
i∈J

( m̃i∑
j=1

η̄i,jE
(S̃i)
j

)2

+

(∑
i∈J

m̃i∑
j=1

η̄i,jE
(S̃i)
j

)2

,

where η̄i,j = ξ̄i,j − ξ̃i,j, ξ̄i,j = ξ̂i,j for i ̸= i⋆, ξ̄i⋆,j = ξ̂i⋆,j for j ≤ ν, ξ̄i⋆,j = ξ̂i⋆,j−1 for
j ≥ ν + 2, and

ξ̄i⋆,ν+1 = ξ̂i⋆,ν
t(Si⋆ )

(ν+1) − t

t(Si⋆ )

(ν+1) − t(Si⋆ )

(ν)

+ ξ̂i⋆,ν+1
t − t(Si⋆ )

(ν)

t(Si⋆ )

(ν+1) − t(Si⋆ )

(ν)

.
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Numerical experiments



Numerical experiments: Monotonicity in hundreds of dimensions

· We consider the target function:

y(x) =
d∑

i=1

arctan

(
5
[

1 − i
d + 1

]
xi

)
. (22)

with x ∈ [0, 1]d. y exhibits decreasing growth rates as the index i increases.

Results (mean ± one standard deviation over 10 replicates) with n = 2d. For the
computation of the cGP mean, 103 (†50) HMC samples are used.

d m
CPU Time [s] Q2 [%]

cGP mode cGP mean GP mean cGP mode cGP mean

10 50 0.1 ± 0.1 0.1 ± 0.1 82.3 ± 6.2 83.8 ± 4.2 88.1 ± 1.7
100 500 0.4 ± 0.1 5.2 ± 0.5 89.8 ± 1.6 90.7 ± 1.4 91.5 ± 1.3
250 1250 4.2 ± 0.7 132.3 ± 26.3 91.7 ± 0.8 92.9 ± 0.6 93.4 ± 0.6
500 2500 37.0 ± 11.4 †156.9 ± 40.5 92.5 ± 0.6 93.8 ± 0.5 †94.3 ± 0.5

1000 5000 262.4 ± 35.8 †10454.3 ± 3399.3 92.6 ± 0.3 94.6 ± 0.2 †95.1 ± 0.2
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Numerical experiments: Monotonicity in hundreds of dimensions
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Ŷ
(x

1 , 0, 0, x
4 , 0)

x1

x
5

Ŷ
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2D projections of the true profiles (top) and the constrained GP predictions (bottom)
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Numerical experiments: Dimension reduction illustration

· We test the capability of MaxMod to account for dimension reduction
considering the function in (22).

· In addition to (x1, . . . , xd), we include D − d virtual variables, indexed as
(xd+1, . . . , xD), which will compose the subset of inactive dimensions.

· ŶMaxMod: the mode of the additive cGP and MaxMod.

· ỸMaxMod: the mode of the non-additive cGP and MaxMod.

Q2 Performance of the MaxMod algorithm with n = 10D.

D d active dimensions knots per dimension Q2(ỸMaxMod) [%] Q2(ŶMaxMod) [%]

10
2 (1, 2) (4, 3) 99.5 99.8
3 (1, 2, 3) (5, 5, 3) 97.8 99.8
5 (1, 2, 3, 4, 5) (4, 4, 4, 3, 2) 91.4 99.8

20
2 (1, 2) (5, 3) 99.7 99.8
3 (1, 2, 3) (4, 4, 3) 99.0 99.9
5 (1, 2, 3, 4, 5) (5, 4, 3, 3, 2) 96.0 99.7
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Numerical experiments: Flood study of the Vienne river

· The database contains a flood study conducted by the French multinational
electric utility company EDF in the Vienne river [Petit et al., 2016].

· It is composed of N = 2 × 104 simulations.

· 1 output: water level H

· 37 inputs depending on: upstream flow disturbance, data on the
geometry of the river bed, and Strickler friction coefficients

· Expert knowledge: H is decreasing w.r.t. friction coef. (variables 1 to 24) and
increasing w.r.t. to the upstream flow disturbance (variable 37).
· Petit et al. [2016] have shown that the additive assumption is realistic here,
and that inputs 11, 35 and 37 explain most of the variance.

· We consider (approximated) LHD of size n = 2d for training the cGP.
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Numerical experiments: Flood study of the Vienne river

The choice made by MaxMod per iteration. Results are computed over 10 replicates.
For the first panel, a bigger and darker square implies a more repeated choice.
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Numerical experiments: Flood study of the Vienne river

Q2 boxplots. Results are computed over 10 replicates. For the first panel, a bigger and
darker square implies a more repeated choice.
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Conclusions

· We combine the additive and constrained frameworks to propose an
additive constrained GP prior and MaxMod algorithm.

· The corresponding mode predictor can be computed and posterior
realizations can be sampled, both in a scalable way to high dimension.

- We demonstrate the performance and scalability of the framework with
examples with d ≤ 1000 and in a real-world application with d = 37.

- MaxMod identifies the most important input variables, with data size as
low as n = 2d in dimension d.

· We provide open-source R codes for our full framework

https://github.com/anfelopera/lineqGPR
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Perspectives

⋆ The extension to block-additivity is being studied by Mathis Deronzier
(PhD student at the IMT), e.g. in 3 dimensions:

Y(x1, x2, x3) = Y1,2(x1, x2) + Y3(x3)

· Variable selection (structure of the blocks).

· Theoretical convergence of the (additive and block-additive) MaxMod
algorithm.

· Further real-world applications.
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