

High-dimensional additive Gaussian processes under monotonicity constraints

A. F. López-Lopera, F. Bachoc and O. Roustant June 26-30, 2023

LIKE 23 workshop

Joint work...

A.F. López-Lopera CERAMATHS, France

F. Bachoc IMT, France

O. Roustant INSA-IMT, France

High-dimensional Additive Gaussian Processes under Monotonicity Constraints

Andrés F. López-Lopera CERAMATHS, UPHF 59313 Valenciennes, France andres.lopezlopera@uphf.fr François Bachoc IMT, UMR5219 CNRS Université Paul Sabatier 31062 Toulouse, France Olivier Roustant IMT, UMR5219 CNRS INSA Toulouse 31077 Toulouse, France

Abstract

We introduce an additive Gaussian process framework accounting for monotonicity constraints and scalable to high dimensions. Our contributions are threefold. First, we show that our framework enables to satisfy the constraints everywhere in the input space. We also show that more general componentwise linear inequality constraints can be handled similarly, such as componentwise convexity. Second, we propose the additive MaxMod algorithm for sequential dimension reduction. By sequentially maximizing a squared-norm criterion, MaxMod identifies the active input dimensions and refines the most important ones. This criterion can be computed explicitly at a linear cost. Finally, we provide open-source codes for our full framework. We demonstrate the performance and scalability of the methodology in several synthetic examples with hundreds of dimensions under monotonicity constraints as well as on a real-word flood application.

Source: https://proceedings.neurips.cc/

- 1. Constrained GPs
- 2. The MaxMod algorithm
- 3. Extension to additive functions
- 4. Numerical experiments

Constrained GPs

GPs form a flexible prior over functions [Rasmussen and Williams, 2005]:

Finite-dimensional approximation of GPs

smooth function Y

 \blacksquare piecewise linear proxy Y_m

• If
$$\xi_i, \xi_{i+1} \in [0, 1]$$
, then

$$Y_m(0.5) \in [0, 1].$$

$$\cdot$$
 Or if $\xi_i < \xi_{i+1}$, then

$$\xi_i < Y_m(0.5) < \xi_{i+1}.$$

Pro: imposing constraints over knots is enough [Maatouk and Bay, 2017]:

the function Y_m is \uparrow and $\in [0, 1]$ \Leftrightarrow the sequence $\boldsymbol{\xi}$ is \uparrow and $\in [0, 1]$.

Finite-dimensional approximation of GPs

· Let Y_S be the finite-dimensional GP with an ordered set of knots:

$$S = \{t_0, \ldots, t_m\}, \text{ with } 0 = t_0 < \cdots < t_m = 1,$$

such that

$$Y_{S}(x) = \sum_{j=1}^{m} Y(t_j)\phi_j(x), \qquad (1)$$

where $x \in [0, 1]$, $Y \sim \mathcal{GP}(0, k_{\theta})$, and $\phi_j : [0, 1] \mapsto \mathbb{R}$ are (asymmetric) hat basis functions.

Finite-dimensional approximation of GPs

· Then, for regression tasks under inequality constraints, we have

$$Y_{S}(x) = \sum_{j=1}^{m} \xi_{j} \phi_{j}(x), \text{ s.t. } \begin{cases} Y_{S}(x_{i}) + \varepsilon_{i} = y_{i} & \text{(regression conditions)}, \\ l \leq \Lambda \xi \leq u & \text{(linear inequality conditions)}, \end{cases}$$
(2)

where $x_i \in [0, 1], y_i \in \mathbb{R}$ for i = 1, ..., n, and

- $\xi_j = Y_S(t_j) = Y(t_j)$ for j = 1, ..., m, i.e. $\boldsymbol{\xi} = [\xi_1, ..., \xi_m]^\top \sim \mathcal{N}(0, \boldsymbol{\Sigma}_{\theta})$ with covariance matrix $\boldsymbol{\Sigma}_{\theta} = (k_{\theta}(t_j, t_{j'}))_{1 \leq j, j' \leq m}$
- $\varepsilon_i \sim \mathcal{N}(0, \tau^2)$, for i = 1, ..., n, with noise variance τ^2
- (Λ, *l*, *u*) define the ineq. constraints. For instance, for the case of monotonicity, we have

$$\underbrace{\begin{bmatrix} -\infty \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{I} \leq \underbrace{\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_m \end{bmatrix}}_{\xi} \leq \underbrace{\begin{bmatrix} \infty \\ \infty \\ \vdots \\ \infty \end{bmatrix}}_{u}$$

· *Uncertainty quantification on* Y_m then relies on drawing samples of ξ subject to interpolation and inequality constraints, i.e. (if rank(Λ) = m) simulating from a **truncated Normal** distribution [López-Lopera et al., 2018]:

$$\mathbf{\Lambda\xi}|\{\Phi\boldsymbol{\xi}+\boldsymbol{\varepsilon}=\boldsymbol{y},\boldsymbol{l}\leq\mathbf{\Lambda\xi}\leq\boldsymbol{u}\}\sim\mathcal{TN}(\mathbf{\Lambda\mu}_{c},\mathbf{\Lambda\Sigma}_{c}\mathbf{\Lambda}^{\top},\boldsymbol{l},\boldsymbol{u}),\tag{3}$$

where μ_c , Σ_c are the parameters of the (Normal) distribution of $\xi | \{ \Phi \xi + \varepsilon \}$:

$$\mathbf{K} = \boldsymbol{\Phi} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\top} + \tau^2 \boldsymbol{I}, \quad \boldsymbol{\mu}_c = \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\top} \mathbf{K}^{-1} \boldsymbol{y}, \quad \boldsymbol{\Sigma}_c = \boldsymbol{\Sigma} - \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\top} \mathbf{K}^{-1} \boldsymbol{\Phi} \boldsymbol{\Sigma}.$$
(4)

* Samples are obtained via Monte Carlo (MC) or Markov Chain MC (MCMC):

- e.g. Hamiltonian Monte Carlo (HMC) [Pakman and Paninski, 2014]

The maximum a posteriori (mode) function in 1D

· Let $\hat{\boldsymbol{\xi}}$ be the mode that maximises the pdf of $\boldsymbol{\xi} | \{ \Phi \boldsymbol{\xi} + \boldsymbol{\varepsilon} = \boldsymbol{y}, l \leq \Lambda \boldsymbol{\xi} \leq \boldsymbol{u} \}$:

$$\widehat{\boldsymbol{\xi}} = \arg\max_{\boldsymbol{\xi} \text{ s.t. } l \leq \Lambda \boldsymbol{\xi} \leq u} \{ -[\boldsymbol{\xi} - \boldsymbol{\mu}_c]^\top \boldsymbol{\Sigma}_c^{-1} [\boldsymbol{\xi} - \boldsymbol{\mu}_c] \},$$
(5)

with $\widehat{\boldsymbol{\xi}} = [\widehat{\xi}_1, \ldots, \widehat{\xi}_m]^\top$.

 \cdot The *MAP* estimate of Y_S is given by

$$\widehat{Y}_{S}(x) = \sum_{j=1}^{m} \widehat{\xi}_{j} \phi_{j}(x).$$
(6)

Pro:

- \widehat{Y}_S can be used as a point estimate
- Easy and fast calculations
- Convergence to the spline solution as $m \to \infty$ [Bay et al., 2016]
- Starting point for MCMC

The maximum a posteriori (mode) function in 1D

· **Con:** the cost of Y_S increases as *d* increases.

$$Y_{S}(\mathbf{x}) = \sum_{j_{1},\dots,j_{d}=1}^{m_{1},\dots,m_{d}} \left[\prod_{p=1,\dots,d} \phi_{j_{p}}^{(p)}(\mathbf{x}_{p}) \right] \xi_{j_{1},\dots,j_{d}}, \quad \text{s.t.} \quad \begin{cases} Y_{S}(\mathbf{x}_{i}) + \varepsilon_{i} = y_{i}, \\ \xi \in \mathcal{C}. \end{cases}$$
(7)

· This drawback can be mitigated by considering:

- a *"smarter" construction of rectangular grids* of knots thanks to the asymmetric construction of the hat basis functions
- and/or further assumptions for complexity simplification

e.g. inactive variables

CERAMATHS

Setting:

- · \mathcal{I} : set of functions interpolating the data (noise-free case).
- *S*: a d-dimensional grid such that, for each dimension, 1D knots are dense in [0, 1].
- · \mathcal{H} : RKHS associated to Y

Theorem (Bay, Grammont, Maatouk) Bay et al. [2016, 2017]

Under some technical conditions

$$\widehat{Y}_{m_1,\ldots,m_d} \to Y_{\mathrm{opt}},$$

uniformly on $[0, 1]^d$, with

$$Y_{\text{opt}} = \operatorname*{argmin}_{f \in \mathcal{H} \cap \mathcal{C} \cap \mathcal{I}} ||f||_{\mathcal{H}}.$$

The MaxMod algorithm

The MaxMod algorithm in 1D

· Let \widehat{Y}_S be the MAP function with an ordered set of knots:

$$S = \{t_0, \ldots, t_m\}, \text{ with } 0 = t_0 < \cdots < t_m = 1.$$

- · Here, we aim at adding a new knot t in S (where?)
- To do so, we aim at *maximising the total modification of the MAP*:

$$I_{\mathcal{S}}(t) = \int_{[0,1]} \left(\widehat{Y}_{\mathcal{S} \cup t}(x) - \widehat{Y}_{\mathcal{S}}(x) \right)^2 dx.$$
(8)

 \cdot The integral in (8) has a closed-form expression.

The MaxMod algorithm in 1D

· Let \widehat{Y}_S be the MAP function with an ordered set of knots:

$$S = \{t_0, \ldots, t_m\}, \text{ with } 0 = t_0 < \cdots < t_m = 1.$$

- · Here, we aim at adding a new knot t in S (where?)
- To do so, we aim at *maximising the total modification of the MAP*:

$$I_{\mathcal{S}}(t) = \int_{[0,1]} \left(\widehat{Y}_{\mathcal{S} \cup t}(x) - \widehat{Y}_{\mathcal{S}}(x) \right)^2 dx.$$
(8)

 \cdot The integral in (8) has a closed-form expression.

Algorithm MaxMod (maximum modification of the MAP) in 1D

Input parameters: the initial subdivision $S^{(0)} \in S$. **Sequential procedure:** for $\kappa \in \mathbb{N}$, do: 1: Set $t_{\kappa+1}^* \in [0, 1]$ such that

$$I_{S^{(\kappa)}}(t^{\star}_{\kappa+1}) \geq \sup_{t \in [0,1]} I_{S^{(\kappa)}}(t)$$

2:
$$S^{(\kappa+1)} = S^{(\kappa)} \cup t^{\star}_{\kappa+1}$$
.

1D example under boundedness and monotonicity constraints

MAP estimate

conditional sample-path

training points + knots ■ MAP estimate
 predictive mean ■ 90% confidence intervals

· Let $\widehat{Y}_{\mathcal{J},S}$ be the MAP function with $|\mathcal{J}|$ active variables and ordered sets of knots $S_{\mathcal{J}}$ for $\mathcal{J} \subseteq \{1, \ldots, D\}$.

· Then, the criterion to maximise is given by

$$I_{\mathcal{J},S}(i,t) = \begin{cases} \frac{1}{N_{S,\mathcal{J},i}} \int_{[0,1]^d} \left(\widehat{Y}_{\mathcal{J},S\cup_i t}(\mathbf{x}) - \widehat{Y}_{\mathcal{J},S}(\mathbf{x}) \right)^2 d\mathbf{x} & \text{if } i \in \mathcal{J}, \\ \frac{1}{N_{S,\mathcal{J},i}} \int_{[0,1]^{d+1}} \left(\widehat{Y}_{\mathcal{J}\cup\{i\},S+i}(\mathbf{x}) - \widehat{Y}_{\mathcal{J},S}(\mathbf{x}) \right)^2 d\mathbf{x} & \text{if } i \notin \mathcal{J}, \end{cases}$$
(9)

where $N_{S,\mathcal{J},i}$ is the increase of the number of basis functions.

- F. Bachoc, A. López-Lopera, and O. Roustant. Sequential construction and dimension reduction of GPs under inequality constraints. SIAM J. on Maths. of Data Science, 2022.

The MaxMod algorithm in higher dimensions

2D example under monotonicity constraints

Evolution of the MaxMod algorithm using $f(x) = \frac{1}{2}x_1 + \arctan(10x_2)$

14

Theorem [Bachoc et al., 2022]

Under some technical conditions, as $m \to \infty$,

$$\widehat{Y}_{\operatorname{MaxMod},m} \to Y_{\operatorname{opt}},$$

uniformly on $[0, 1]^d$, with

$$Y_{\text{opt}} = \operatorname*{argmin}_{f \in \mathcal{H} \cap \mathcal{C} \cap \mathcal{I}} ||f||_{\mathcal{H}}.$$

Remarks

- A neighbourhood penalty term has been added to the criterion. Then, it is proved that the sequence of knots generated by MaxMod is dense.
- The proof is technical and the result rather... minimal.
 Perspective: show some expected behaviour observed in practice about the detection of most influential variables and the concentration of knots at locations where the function varies the most.

The MaxMod algorithm in higher dimensions

- \cdot The constrained GP is tractable depending on $|\mathcal{J}|$ (nb of active variable).
- · According to numerical tests, our framework is limited to $|\mathcal{J}| \leq 5$.
- · Therefore, further assumptions are required to scale the model:
 - e.g. additive structures

Additive GP predictions using (left) the unconstrained GP mean, (center) the cGP mode and (right) the cGP mean via HMC. The constrained model accounts for both componentwise convexity and monotonicity conditions along x_1 and x_2 , respectively.

Extension to additive functions

· In high dimension, many statistical regression models are based on additive structures of the form:

$$y(x) = y_1(x_1) + \dots + y_d(x_d).$$
 (10)

· Then GP priors can be placed over y_1, \ldots, y_d [Durrande et al., 2012]

 $Y_i \sim \mathcal{GP}(0,k_i),$

for i = 1, ..., d. Taking $Y_1, ..., Y_d$ as independent GPs, the process

$$Y(\mathbf{x}) = Y_1(x_1) + \cdots + Y_d(x_d)$$

is also a GP and its kernel is given by

$$k(\mathbf{x}, \mathbf{x}') = k_1(x_1, x_1') + \dots + k_d(x_d, x_d').$$
(11)

· For the constrained case, we can approximate Y_i by a finite-dimensional GP:

$$Y_{i,S_i}(x_i) = \sum_{j=1}^{m_i} \xi_{i,j} \phi_{i,j}(x_i),$$

with one-dimensional subdivision S_i , and m_i knots.

· We let $S = (S_1, \ldots, S_d)$. The finite-dimensional GP is written,

$$Y_{S}(\mathbf{x}) = \sum_{i=1}^{d} Y_{i,S_{i}}(\mathbf{x}_{i}) = \sum_{i=1}^{d} \sum_{j=1}^{m_{i}} \xi_{i,j} \phi_{i,j}(\mathbf{x}_{i}), \qquad (12)$$

where $\xi_{i,j} = Y_i(t_{(j)}^{(S_i)})$ and $\phi_{i,j} : [0,1] \mapsto \mathbb{R}$ are asymmetric hat basis functions.

· One can note that the total number of knots is given by $m = m_1 + \cdots + m_d$.

· Observe from (12) that, since $\xi_{i,j}$, for i = 1, ..., d and $j = 1, ..., m_i$, are Gaussian distributed, then Y_{i,S_i} is a GP with kernel given by

$$\widetilde{k}_{i}(x_{i}, x_{i}') = \sum_{j=1}^{m_{i}} \sum_{\kappa=1}^{m_{i}} \phi_{i,j}(x_{i}) \phi_{i,\kappa}(x_{i}') k_{i}(t_{(j)}^{(S_{i})}, t_{(\kappa)}^{(S_{i})}).$$
(13)

Moreover, Y_S is a GP with kernel $\tilde{k}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{d} \tilde{k}_i(x_i, x_i')$.

• We let $\Sigma_i = k_i(S_i, S_i)$ be the $m_i \times m_i$ covariance matrix of ξ_i .

· We consider the componentwise constraints $Y_{i,S_i} \in \mathcal{E}_i, i = 1, ..., d$ such that

$$Y_{i,S_i} \in \mathcal{E}_i \iff \boldsymbol{\xi}_i \in \mathcal{C}_i \tag{14}$$

where $\boldsymbol{\xi}_i = [\xi_{i,1}, \cdots, \xi_{i,m_i}]^{\top}$ and $C_i = \{\boldsymbol{c} \in \mathbb{R}^{m_i} : l_i \leq \Lambda_i \boldsymbol{c} \leq \boldsymbol{u}_i\}.$

- · Examples of constraints are monotonicity and componentwise convexity.
- \cdot Given the observations and the constraints, the MAP estimate is given by

$$\widehat{Y}_{S}(\boldsymbol{x}) = \sum_{i=1}^{d} \sum_{j=1}^{m_{i}} \widehat{\xi}_{i,j} \phi_{i,j}(\boldsymbol{x}_{i}).$$
(15)

Finite-dimensional approximation of additive GPs

• As in (5), the vector
$$\widehat{\boldsymbol{\xi}} = [\widehat{\boldsymbol{\xi}}_1^\top, \dots, \widehat{\boldsymbol{\xi}}_d^\top]^\top$$
 with $\widehat{\boldsymbol{\xi}}_i = [\widehat{\boldsymbol{\xi}}_{i,1}, \dots, \widehat{\boldsymbol{\xi}}_{i,m_i}]^\top$ is given by

$$\widehat{\boldsymbol{\xi}} = \operatorname*{argmin}_{\substack{\boldsymbol{\xi} = (\boldsymbol{\xi}_1^\top, \dots, \boldsymbol{\xi}_d^\top)^\top\\ l_i \leq \boldsymbol{\Lambda}_i \boldsymbol{\xi}_i \leq u_i, i=1, \dots, d}} (\boldsymbol{\xi} - \boldsymbol{\mu}_c)^\top \boldsymbol{\Sigma}_c^{-1} (\boldsymbol{\xi} - \boldsymbol{\mu}_c),$$
(16)

where $\boldsymbol{\mu}_c = [\boldsymbol{\mu}_{c,1}^\top, \dots, \boldsymbol{\mu}_{c,d}^\top]^\top$ is the $m \times 1$ vector with block *i*, and $(\boldsymbol{\Sigma}_{c,i,j})_{i,j}$ is the $m \times m$ matrix with block (i, j), given by

$$\boldsymbol{\mu}_{c,i} = \boldsymbol{\Sigma}_i \boldsymbol{\Phi}_i^\top \left[\left(\sum_{p=1}^d \boldsymbol{\Phi}_p \boldsymbol{\Sigma}_p \boldsymbol{\Phi}_p^\top \right) + \tau^2 \boldsymbol{I}_n \right]^{-1} \boldsymbol{y}_n, \tag{17}$$

$$\boldsymbol{\Sigma}_{c,i,j} = \mathbf{1}_{i=j}\boldsymbol{\Sigma}_i - \boldsymbol{\Sigma}_i \boldsymbol{\Phi}_i^{\top} \left[\left(\sum_{p=1}^d \boldsymbol{\Phi}_p \boldsymbol{\Sigma}_p \boldsymbol{\Phi}_p^{\top} \right) + \tau^2 \boldsymbol{I}_n \right]^{-1} \boldsymbol{\Phi}_j \boldsymbol{\Sigma}_j.$$
(18)

Remarks:

- $\Sigma_{c,i,j}$ involves contributions of the cross-covariances, as the interpolation constraints "breaks" the independence of the 1D GPs.
- Computational speed-up can be done for $m \ll n$ (matrix inv. lemma).

· Consider an additive cGP model that uses only a subset $\mathcal{J} \subseteq \{1, \dots, d\}$ of active variables.

· Its mode function \widehat{Y}_{S} , from $\mathbb{R}^{|\mathcal{J}|}$ to \mathbb{R} , by, for $x = (x_i; i \in \mathcal{J})$,

$$\widehat{Y}_{S}(\boldsymbol{x}) = \sum_{i \in \mathcal{J}} \sum_{j=1}^{m_{i}} \widehat{\xi}_{i,j} \phi_{i,j}(\boldsymbol{x}_{i}).$$
(19)

 \cdot We measure this benefit by the squared-norm modification of the cGP mode

$$I_{S,i^{\star}} = \int_{[0,1]^{|\mathcal{J}|+1}} \left(\widehat{Y}_{S,i^{\star}}(\boldsymbol{x}) - \widehat{Y}_{S}(\boldsymbol{x}) \right)^{2} d\boldsymbol{x} \text{ for } i^{\star} \notin \mathcal{J},$$
(20)

$$I_{S,i^{\star},t} = \int_{[0,1]^{|\mathcal{J}|}} \left(\widehat{Y}_{S,i^{\star},t}(\boldsymbol{x}) - \widehat{Y}_{S}(\boldsymbol{x}) \right)^{2} d\boldsymbol{x} \text{ for } i^{\star} \in \mathcal{J}.$$
(21)

· Both (20) and (21) have analytic expression assuming $x_i \sim \text{Uniform}(0, 1)$ for i = 1, ..., d (see López-Lopera et al. [2022]), where the computational cost is linear with respect to $m = \sum_{i \in \mathcal{J}} m_i$.

Extension to additive functions

· For a new variable $i^* \notin \mathcal{J}$, the new mode function is

$$\widehat{Y}_{S,i^{\star}}(\boldsymbol{x}) = \sum_{i \in \mathcal{J}} \sum_{j=1}^{m_i} \widetilde{\xi}_{i,j} \phi_{i,j}(x_i) + \sum_{j=1}^2 \widetilde{\xi}_{i^{\star},j} \phi_{i^{\star},j}(x_{i^{\star}})$$

• We let $\phi_{i^{\star},1}(u) = 1 - u$ and $\phi_{i^{\star},2}(u) = u$ for $u \in [0, 1]$.

Proposition (Computation of *I*_{*S*,*i**}**)**

We have

$$I_{S,i^{\star}} = \sum_{i \in \mathcal{J}} \sum_{\substack{j,j'=1\\|j-j'| \leq 1}}^{m_i} \eta_{i,j'} E_{j,j'}^{(S_i)} - \sum_{i \in \mathcal{J}} \left(\sum_{j=1}^{m_i} \eta_{i,j} E_j^{(S_i)} \right)^2 + \frac{\eta_{i^{\star}}^2}{12} + \left(\sum_{i \in \mathcal{J}} \sum_{j=1}^{m_i} \eta_{i,j} E_j^{(S_i)} - \frac{\zeta_{i^{\star}}}{2} \right)^2$$
where $\eta_{i,j} = \widehat{\xi}_{i,j} - \widetilde{\xi}_{i,j}, \eta_{i^{\star}} = \widetilde{\xi}_{i^{\star},2} - \widetilde{\xi}_{i^{\star},1}, \zeta_{i^{\star}} = \widetilde{\xi}_{i^{\star},1} + \widetilde{\xi}_{i^{\star},2}, E_j^{(S_i)} := \int_0^1 \phi_{i,j}(t) dt$
and $E_{j,j'}^{(S_i)} := \int_0^1 \phi_{i,j}(t) \phi_{i,j'}(t) dt$ with explicit expressions in Lemma 1 [López-Lopera
et al., 2022, Appendix A.3]. The matrices $(E_{j,j'}^{(S_i)})_{1 \leq j,j' \leq m_i}$ are 1-band and the
computational cost is linear w.r.t. $m = \sum_{i \in \mathcal{J}} m_i$.

· For a new *t* added to S_{i^*} with $i^* \in \mathcal{J}$, the new mode function is

$$\widehat{Y}_{S,i^{\star},t}(\pmb{x}) = \sum_{i\in\mathcal{J}}\sum_{j=1}^{\widetilde{m}_i}\widetilde{\xi}_{i,j}\widetilde{\phi}_{i,j}(x_i),$$

where $\widetilde{m}_i = m_i$ for $i \neq i^*$, $\widetilde{m}_{i^*} = m_{i^*} + 1$, $\widetilde{\phi}_{i,j} = \phi_{i,j}$ for $i \neq i^*$, and $\widetilde{\phi}_{i^*,j}$ is obtained from $S_{i^*} \cup \{t\}$ as in Proposition 1.

Proposition (Computation of $I_{S,i^{\star},t}$ **)**

For $i \in \mathcal{J} \setminus \{i^*\}$, let $\widetilde{S}_i = S_i$. Let $\widetilde{S}_{i^*} = S_{i^*} \cup \{t\}$. Recall that the knots in S_{i^*} are written $0 = t_{(1)}^{(S_{i^{\star}})} < \cdots < t_{(m_{\star})}^{(S_{i^{\star}})} = 1$. Let $\nu \in \{1, \ldots, m_{i^{\star}} - 1\}$ be such that $t_{(\nu)}^{(S_{i^{\star}})} < t < t_{(\nu+1)}^{(S_{i^{\star}})}$. Then, with a linear cost w.r.t. $\widetilde{m} = \sum_{i \in \mathcal{J}} \widetilde{m}_i$, we have $I_{S,i^{\star},t} = \sum_{i \in \mathcal{J}} \sum_{j,j'=1}^{\tilde{m}_i} \bar{\eta}_{i,j} \bar{\eta}_{i,j'} E_{j,j'}^{(\widetilde{S}_i)} - \sum_{i \in \mathcal{J}} \left(\sum_{i=1}^{\tilde{m}_i} \bar{\eta}_{i,j} E_j^{(\widetilde{S}_i)} \right)^2 + \left(\sum_{i \in \mathcal{J}} \sum_{j=1}^{\tilde{m}_i} \bar{\eta}_{i,j} E_j^{(\widetilde{S}_i)} \right)^2,$ |i-i'| < 1where $\overline{\eta}_{i,i} = \overline{\xi}_{i,i} - \widetilde{\xi}_{i,i}$, $\overline{\xi}_{i,i} = \widehat{\xi}_{i,i}$ for $i \neq i^*$, $\overline{\xi}_{i^*,i} = \widehat{\xi}_{i^*,i}$ for $i < \nu$, $\overline{\xi}_{i^*,i} = \widehat{\xi}_{i^*,i-1}$ for $j > \nu + 2$, and $\bar{\xi}_{i^{\star},\nu+1} = \hat{\xi}_{i^{\star},\nu} \frac{t_{(\nu+1)}^{(S_{i^{\star}})} - t}{t_{(\nu+1)}^{(S_{i^{\star}})} - t_{(\nu)}^{(S_{i^{\star}})}} + \hat{\xi}_{i^{\star},\nu+1} \frac{t - t_{(\nu)}^{(S_{i^{\star}})}}{t_{(\nu+1)}^{(S_{i^{\star}})} - t_{(\nu)}^{(S_{i^{\star}})}}.$

Numerical experiments

· We consider the target function:

$$y(\mathbf{x}) = \sum_{i=1}^{d} \arctan\left(5\left[1 - \frac{i}{d+1}\right]x_i\right).$$
(22)

with $x \in [0, 1]^d$. *y* exhibits decreasing growth rates as the index *i* increases.

Results (mean \pm one standard deviation over 10 replicates) with n = 2d. For the computation of the cGP mean, 10^3 ([†]50) HMC samples are used.

d	т	CPU Time [s]		Q ² [%]		
		cGP mode	cGP mean	GP mean	cGP mode	cGP mean
10	50	0.1 ± 0.1	0.1 ± 0.1	82.3 ± 6.2	83.8 ± 4.2	$\textbf{88.1} \pm \textbf{1.7}$
100	500	0.4 ± 0.1	5.2 ± 0.5	89.8 ± 1.6	90.7 ± 1.4	$\textbf{91.5} \pm \textbf{1.3}$
250	1250	4.2 ± 0.7	132.3 ± 26.3	91.7 ± 0.8	92.9 ± 0.6	$\textbf{93.4} \pm \textbf{0.6}$
500	2500	37.0 ± 11.4	$^{\dagger}156.9 \pm 40.5$	92.5 ± 0.6	93.8 ± 0.5	† 94.3 \pm 0.5
1000	5000	262.4 ± 35.8	$^{\dagger}10454.3 \pm 3399.3$	92.6 ± 0.3	94.6 ± 0.2	† 95.1 \pm 0.2

2D projections of the true profiles (top) and the constrained GP predictions (bottom)

 \cdot We test the capability of MaxMod to account for dimension reduction considering the function in (22).

· In addition to $(x_1, ..., x_d)$, we include D - d virtual variables, indexed as $(x_{d+1}, ..., x_D)$, which will compose the subset of inactive dimensions.

- · \widehat{Y}_{MaxMod} : the mode of the additive cGP and MaxMod.
- · \widetilde{Y}_{MaxMod} : the mode of the non-additive cGP and MaxMod.

D	d	active dimensions	knots per dimension	$Q^2(\widetilde{Y}_{MaxMod})$ [%]	$Q^2(\widehat{Y}_{MaxMod})$ [%]
	2	(1, 2)	(4, 3)	99.5	99.8
10	3	(1, 2, 3)	(5, 5, 3)	97.8	99.8
	5	(1, 2, 3, 4, 5)	(4, 4, 4, 3, 2)	91.4	99.8
	2	(1, 2)	(5, 3)	99.7	99.8
20	3	(1, 2, 3)	(4, 4, 3)	99.0	99.9
	5	(1, 2, 3, 4, 5)	(5, 4, 3, 3, 2)	96.0	99.7

 Q^2 Performance of the MaxMod algorithm with n = 10D.

• The database contains a flood study conducted by the French multinational electric utility company EDF in the Vienne river [Petit et al., 2016].

- · It is composed of $N = 2 \times 10^4$ simulations.
 - · 1 output: water level H
 - · 37 inputs depending on: upstream flow disturbance, data on the geometry of the river bed, and Strickler friction coefficients

 \cdot Expert knowledge: *H* is decreasing w.r.t. friction coef. (variables 1 to 24) and increasing w.r.t. to the upstream flow disturbance (variable 37).

• Petit et al. [2016] have shown that the additive assumption is realistic here, and that inputs 11, 35 and 37 explain most of the variance.

· We consider (approximated) LHD of size n = 2d for training the cGP.

Numerical experiments: Flood study of the Vienne river

The choice made by MaxMod per iteration. Results are computed over 10 replicates. For the first panel, a bigger and darker square implies a more repeated choice.

Numerical experiments: Flood study of the Vienne river

 Q^2 boxplots. Results are computed over 10 replicates. For the first panel, a bigger and darker square implies a more repeated choice.

 \cdot We combine the additive and constrained frameworks to propose an additive constrained GP prior and MaxMod algorithm.

• The corresponding mode predictor can be computed and posterior realizations can be sampled, both in a scalable way to high dimension.

- We demonstrate the performance and scalability of the framework with examples with $d \le 1000$ and in a real-world application with d = 37.
- MaxMod identifies the most important input variables, with data size as low as n = 2d in dimension *d*.
- \cdot We provide open-source R codes for our full framework

https://github.com/anfelopera/lineqGPR

* The extension to block-additivity is being studied by Mathis Deronzier (PhD student at the IMT), e.g. in 3 dimensions:

$$Y(x_1, x_2, x_3) = Y_{1,2}(x_1, x_2) + Y_3(x_3)$$

- $\cdot\,$ Variable selection (structure of the blocks).
- Theoretical convergence of the (additive and block-additive) MaxMod algorithm.
- · Further real-world applications.

References

- F. Bachoc, A. F. López-Lopera, and O. Roustant. Sequential construction and dimension reduction of Gaussian processes under inequality constraints. SIAM Journal on Mathematics of Data Science, 4(2):772–800, 2022.
- X. Bay, L. Grammont, and H. Maatouk. Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation. *Electronic Journal of Statistics*, 10(1):1580–1595, 2016.
- X. Bay, L. Grammont, and H. Maatouk. A new method for interpolating in a convex subset of a Hilbert space. *Computational Optimization and Applications*, 68(1):95–120, 2017.
- N. Durrande, D. Ginsbourger, and O. Roustant. Additive covariance kernels for high-dimensional Gaussian process modeling. *Annales de la Faculté de Sciences de Toulouse*, 21(3):481–499, 2012.
- A. F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant. Finite-dimensional Gaussian approximation with linear inequality constraints. *SIAM/ASA Journal on Uncertainty Quantification*, 6(3):1224–1255, 2018.
- A. F. López-Lopera, F. Bachoc, and O. Roustant. High-dimensional additive Gaussian processes under monotonicity constraints. In *NeurIPS*. 2022.
- H. Maatouk and X. Bay. Gaussian process emulators for computer experiments with inequality constraints. *Mathematical Geosciences*, 49(5):557–582, 2017.
- A. Pakman and L. Paninski. Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. Journal of Computational and Graphical Statistics, 23(2):518–542, 2014.
- S. Petit, F. Zaoui, A.-L Popelin, C. Goeury, and N. Goutal. Couplage entre indices à base de dérivées et mode adjoint pour l'analyse de sensibilité globale. Application sur le code Mascaret. HAL e-prints, September 2016.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press,

Cambridge, MA, 2005.

