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Intro: evaluating sample quality

�

Task: Approximate EP [f ] with EQ [f ] =
P

i wi f (xi )
Example (Bayesian inference):
� P : Posterior (p(x ) = ~p(x )=Z )
� Q : Markov chain Monte Carlo sampler

Question: how good is approximation Q?
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One approach: kernel Stein discrepancy

Kernel Stein discrepancy:

KSDP (Q) =
q
EX ;Y�Q
Q

�
kp(X ;Y )

�

Computable discrepancy measure
Just a moment...what can we read off KSDP (Q)?
� Does smaller KSDP (Q) mean EQ [f ] is closer to EP [f ]?
� Does KSDP (Qn) ! 0 mean EQn [f ] ! EP [f ]?

This talk: f is of polynomial growth (e.g., f (x ) = x 2)
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This talk: closeness in moments

Established result:

KSDP (Qn) ! 0 implies sup
f 2Fpoly

��EQn

�
f
�
� EP

�
f
���! 0

KSD controls worst-case error w.r.t. Fpoly

The rest of the talk clarifies ambiguities (Fpoly; RKHS kernel)

4/28



Outline

Controlling Moments
with Kernel Stein Discrepancies

Introduction to KSD

Part 1: Stein equation – how KSD is related to a particular function

Part 2: Clarifying conditions on the RKHS
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Prep: Idea of Stein discrepancy

Suppose we have function hP

EP [hP ] = 0

Then
EQ [hP ] 6= 0) Q 6= P

P -mean-zero function can quantify Q 6= P
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Prep: Idea of Stein discrepancy

Suppose a family HP of P -mean-zero functions,

EP [hP ] = 0; hP 2 HP

Stein discrepancy = worst-case error

sup
h2H

jEQ [hP ]j

Non-zero Stein discrepancy ) Q 6= P

How to prepare such HP? ! Stein operator + RKHS
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Prep: Diffusion Stein operator
Diffusion Stein operator

TPv(x ) =
hr; p(x )m(x )v(x )i

p(x )

where
v : Rd ! R

d ; m : Rd ! R
d�d :

Properties:
1 Normalisation constant of p not required
2 Zero mean: if mv is P -integrable (by the divergence theorem),

EP [TPv ] = 0
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Prep: Diffusion Stein operator

Why diffusion? ! associated diffusion

dZ x
t = b(Z x

t )dt + �(Z x
t )dBt with Z x

0 = x

where

Drift b(x ) = hr; p(x )m(x )i=f2p(x )}

Diffusion matrix m(x ) = �(x )�(x )>

Then

TPv(x ) = 2hb(x ); v(x )i+ hm(x );rv(x )i
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Prep: Diffusion kernel Stein discrepancy

(Diffusion) Kernel Stein discrepancy:

KSDP (Q) = sup
kvkHK�1

��EQ�TPv ���
where HK is vector-valued RKHS defined by matrix-valued K
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Prep: Diffusion kernel Stein discrepancy

If each TPv is Q-integrable,

KSDP (Q)2 = EX ;Y�Q
Q [kp(X ;Y )]

where

kp(x ; y) =
1

p(x )p(y)

*
ry ; hrx ; (p(x ) m(x )K (x ; y)m(y)>| {z }

Langevin KSD=k Id; m�Id

p(y)i

+

KSD is possible to compute in cloed form
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Stein equation

12/28



KSD and Stein equation (1)

Q. How is KSDP (Q) related to jEP [f (X )]� EQ [f (Y )]j?

13/28



KSD and Stein equation (1)

Q. How is KSDP (Q) related to jEP [f (X )]� EQ [f (Y )]j?

Suppose we have a solution vf to Stein equation :

TPv = f � EP [f ]

13/28



KSD and Stein equation (1)

Q. How is KSDP (Q) related to jEP [f (X )]� EQ [f (Y )]j?

Suppose we have a solution vf to Stein equation :

TPv = f � EP [f ]

Step 1: rewrite jEP [f (X )]� EQ [f (Y )]j as

jEP [f ]� EQ [f ]j =
���EQhTPvf i���

13/28



KSD and Stein equation (1)
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KSD and Stein equation (2)

jEP [f ]� EQ [f ]j � EQ

h���TPvf � TPvRKHS

���i| {z }
Approximation error

+ kvRKHSkHKKSDP (Q)| {z }
Stein discrepancy (and norm)

Comments:

Key idea: bounding the error yields an estimate of jEP [f ]� EQ [f ]j
A result: KSDP (Qn) ! 0 implies jEP [f ]� EQn [f ]j ! 0 if well approximated

Two questions:
1 Stein equation and solution:

� Do we have a solution to TPvf = f � EP [f ]?
� What properties does vf have?

2 RKHS – what conditions required to achieve approximation?
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Preparation: Pseudo-Lipschitz functions

A function f : Rd ! R is pseudo-Lipschitz of order q � 1 if

jf (x )� f (y)j
kx � yk2

� C (1+ kxkq�12 + kykq�12 ) for all x ; y 2 Rd ;

Some comments:

C is a constant; we use C = 1 (and some other conditions)

q = 1 recovers the usual Lipschitz-ness

f (and its derivatives) are allowed to grow like deg-q polynomials
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Stein equation and solution

TPvf = f � EP [f ]

Existence of solution depends on P and f

Solution is often implicit but can be characterised as follows:

Theorem (Erdogdu, Mackey, and Shamir, Neurips 2018)

If f 2 C3 is pseudo-Lipschitz of order q � 1, under appropriate
conditions on P ;

krivf (x )kop � �i (P ; f )
�
1+ kxkq�12

�
; for i 2 f0; 1; 2g;

i.e., the growth of vf (and derivatives) is of O(kxkq�12 )

An appropriate subset F of pLip functions makes �i (P ; f ) independent of specific f
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RKHS to control moments
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Conditions on RKHS
Recall TPvf (x ) = f � EP [f ] = O

�
kxkq2

�
and

TPv(x ) = 2hb(x ; v(x )i+ hm(x );rv(x )i

Evaluate approximation error jTPvf � TPvRKHSj :

jTPvf (x )� TPvRKHS(x )j (1fkxk2 > rg+ 1fkxk2 � rg)| {z }
=1

� 2kxkq21fkxk2 > rg| {z }
(A):Behaviour at infinity

+ jTPvf (x )� TPvRKHS(x )j 1fkxk2 � rg| {z }
(B):Error in bounded region

Desiderata on RKHS HK :

TP (HK ) consists of O(kxkq2) functions
TP (HK ) can approximate x 7! kxkq21fkxk > rg
HK can approximate any function up to first derivatives
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Conditions on RKHS (contd.)

Proposition
RKHS defined by kernel K = k Id with

k(x ; y) = w(x )w(y)

 
`(x ; y) +

� 2 + hx ; yip
� 2 + kxk2

p
� 2 + kyk2

!

satisfies the desiderata if

1 ` is translation invariant and C10-universal
(e.g., Matérn, Gaussian, IMQ kernels)

2 w(x ) =
�
� 2 + kxk22

�(q�1)=2
3 The P-targeting diffusion is dissipative; i.e.,

2hb(x ); x i+ tr[m(x )] � ��kxk22 + �

for �; � > 0
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Main result: KSD bound on pLip metric

Theorem (Informal bound)
For any " > 0; we have

sup
f 2Fq

jEP [f ]� EQ [f ]j �cP ;d

�
g
�
"�1

�
�KSDP (Q)

�
+ "

where

Fq � f1-pseudo Lipschitz functions of order q � 1g

cP ;d > 0

g: increasing function

For sequence of distributions fQ1;Q2; : : : g;

KSDP (Qn) ! 0) sup
f 2Fq

jEP [f ]� EQn [f ]j ! 0

”KSD convergence implies moment convergence“
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Matérn KSD bound on pLip metric

Theorem
There exist cP ;d ; c�;q > 0 such that

sup
f 2Fq

jEP [f ]� EQ [f ]j �cP ;d �KSDP (Q)
1

d+1+c�;q

if ` is chosen as

`(x ; y) =
21�(d=2+�)

�f(d=2+ �)g
kx � yk�2K��

�
kx � yk2

�
;

where K�� is the Bessel function of the second kind and � > 1
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Experiments
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Toy experiment 1: variance perturbation

Convergence of contaminated distribution

P = N (0; Id); Qn =

�
1�

1
n + 1

�
P +

1
n + 1

N
�
0; (n + 1)Id

	
Qn converges P in distribution but not in variance

Check KSD with IMQ kernel `(x ; y) =
�
1+ kx � yk2

2
�
�1=2
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102 105 108

Sequence index n

10−1

101

KSD(P,Qn,N)2

IMQ IMQ sum (lin.) IMQ sum (quad.)

102 105 108

Sequence index n

10−1

101

KSD(P,Qn,N)2

Increase n with N fixed:

Qn;N =

�
1�

1

n + 1

�
P̂N +

1

n + 1
N̂N

P̂N = N�1

NX
i=1

�Xi ; N̂N = N�1

NX
i=1

�~Xi
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Toy experiment 1: variance perturbation
Convergence of contaminated distribution
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�
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102 105 108

Sequence index n

10−1

101

KSD(P,Qn,N)2

IMQ IMQ sum (lin.) IMQ sum (quad.)

102 103

Sample size N

10−2

100

102

KSD(P,Qñ,N)2

Increase N while n fixed at ~n = 106

Qn;N =

�
1�

1

n + 1

�
P̂N +

1

n + 1
N̂N

“KSD overestimated for small N ”
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Toy experiment 1: variance perturbation
Convergence of contaminated distribution

P = N (0; Id); Qn =
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Linear growth 6= enough to
detect non-convergence

Variance non-convergence
detected by kernel with
quadratic growth
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Toy experiment 2: heavy-tailed target

Standard Student’s t-distribution

p(x ) =
�
�
d+�
2

�
�
��
2
�
�

d
2�

d
2

 
1+

kxk22
�

!� d+�
2

Langevin diffusion �(x ) = Id does not satisfy the required conditions

Itô diffusion with diffusion coefficient �(x ) =
q
1+ ��1kxk22Id does

Recall: Stein kernel for diffusion KSD

kp(x ; y) =
1

p(x )p(y)

D
ry ; hrx ; (p(x )m(x )K (x ; y)m(y)>p(y)i

E

! use m(x ) = �(x )�(x )> =
�
1+ ��1kxk22

�
Id
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Mean perturbation with heavy-tailed target
Convergence of contaminated distribution

p(x ) /
�
1+ ��1kxk22

��(�+d)=2
Qn =

�
1�

1
n + 1

�
P +

1
n + 1

N
�
(n + 1)1; Id

	
(Qn converges P in distribution but not in mean)

101 103

Sequence index n

10−1

101

103

KSD(P,Qn,N)2

KSD DKSD

101 103

Sequence index n

10−1

101

103

KSD(P,Qn,N)2

Both use proposed k with IMQ

Langevian KSD (IMQ) fails to
detect non-convergence

DKSD detectes mean
non-convergence

25/28



Summary

1 Kernel Stein discrepancy: computable discrepancy measure

2 Clarified conditions when KSD implies moment convergence

3 Presented a practical kernel

Reference (to be updated soon, hopefully):
Controlling Moments with Kernel Stein Discrepancies
Heishiro Kanagawa, Alessandro Barp, Carl-Johann Simon-Gabriel,
Arthur Gretton, Lester Mackey
https://arxiv.org/abs/2211.05408

Python code:
https://github.com/noukoudashisoup/ksd-moment
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Questions?
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Key assumptions on diffusion

Required assumptions:

1 Dissipativity
APkxk22 � ��kxk22 + �;

where AP f (x ) = hb(x );rf (x )i+ 1
2h�(x )�(x )

>;r2f (x )i

2 Wasserstein decay (� needs to be fast-decaying)

inf
couplings(Z x

t ;Z y
t )
E[kZ x

t � Z y
t k2] � �(t)kx � yk2 for x ; y 2 RD
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