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Intro: evaluating sample quality

* W b,

m Task: Approximate Ep[f] with Eq[f] = >°; wif(z;)
m Example (Bayesian inference):

® P : Posterior (p(z) = p(z)/2)

® @ : Markov chain Monte Carlo sampler

m Question: how good is approximation Q7
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One approach: kernel Stein discrepancy

Kernel Stein discrepancy:

KSDp (Q) = \/EX,Y~Q®Q[kp(X7 V)]

m Computable discrepancy measure
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One approach: kernel Stein discrepancy

Kernel Stein discrepancy:

KSDp (Q) = \/EX,Y~Q®Q[kp(X7 V)]

m Computable discrepancy measure
m Just a moment...what can we read off KSDp (Q)?

Does smaller KSDp (Q) mean Eg[f] is closer to Ep[f]?
Does KSDp (Q,) — 0 mean Eq [f] = Ep[f]?

m This talk: f is of polynomial growth (e.g., f(z) = z2)
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This talk: closeness in moments

Established result:

KSDp(Qn) — 0 implies sup |Eq, [f] —Ep[f]| =0

fe}-poly

m KSD controls worst-case error w.r.t. Fpoly
m The rest of the talk clarifies ambiguities (Fpoy, RKHS kernel)
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Outline

Controlling Moments
with Kernel Stein Discrepancies

m Introduction to KSD
m Part 1: Stein equation — how KSD is related to a particular function
m Part 2: Clarifying conditions on the RKHS
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Prep: Idea of Stein discrepancy

Suppose we have function hp

Ep[hp] = 0
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Prep: Idea of Stein discrepancy

Suppose we have function hp
Ep[hp] =0

Then
Eglhe] #0= Q # P

P-mean-zero function can quantify @ # P
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Prep: Idea of Stein discrepancy

Suppose a family Hp of P-mean-zero functions,
Ep[hp] =0, hp € Hp
Stein discrepancy = worst-case error

sup|Eq[hp]|
heH

Non-zero Stein discrepancy = Q # P

How to prepare such Hp? — Stein operator + RKHS
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Prep: Diffusion Stein operator

Diffusion Stein operator

(V,p(z)m(z)v(z))
p(z)

Tpu(z) =

where
v:R* 5 R m o RY — RIXG,

Properties:
1 Normalisation constant of p not required
2 Zero mean: if mv is P-integrable (by the divergence theorem),

Ep[Tpv] =0
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Prep: Diffusion Stein operator

Why diffusion? — associated diffusion

dZ¢ = b(Z8)dt + o(ZF)dB, with Z8 = z

where
m Drift b(z) = (V, p(z)m(z))/{2p(z)}
m Diffusion matrix m(z) = o(z)o(z) "
Then

Tru(z) = 2(b(2), v(2)) + (m(z), Vo(a))
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Prep: Diffusion kernel Stein discrepancy

(Diffusion) Kernel Stein discrepancy:

KSDp (Q) = sup |Eg[Tpv]|

H'UH’HKSI

where Hx is vector-valued RKHS defined by matrix-valued K
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Prep: Diffusion kernel Stein discrepancy

If each Tpv is Q-integrable,

KSDp (Q)2 =Ex,v~oe0lk(X, Y)]

; <vy,(vz,(p(m) m(z)K (z,y)m(y)" p(y))>

Langevin KSD=kId, m=Id
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Prep: Diffusion kernel Stein discrepancy

If each Tpv is Q-integrable,

KSDp (Q)2 =Ex,v~oe0lk(X, Y)]

= S <Vy, (Va, (p(z) m(z)K(z,y)m(y)T" P(y)>>

Langevin KSD=kId, m=Id

KSD is possible to compute in cloed form
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Stein equation
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KSD and Stein equation (1)

Q. How is KSDp (Q) related to |Ep[f(X)] — Eo[f(Y)]|?
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KSD and Stein equation (1)

Q. How is KSDp (Q) related to |Ep[f(X)] — Eo[f(Y)]|?

Suppose we have a solution v to Stein equation:
Trpv = f — Ep[f]
Step 1: rewrite |[Ep[f(X)] — Eo[f(Y)]| as

[Eplf] - Eqlf]l = [Eo[Truf|
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KSD and Stein equation (1)

Q. How is KSDp (Q) related to |Ep[f(X)] —Eo[f(Y)]|?

Suppose we have a solution v to Stein equation:

Trv = f — Ep[f]

Step 2: approximate 7pv; using an RKHS function

|Ep[f] — Eqlf]l = ‘EQ [TPUf — TpurkHS + TPURKHS] ‘
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KSD and Stein equation (1)

Q. How is KSDp (Q) related to |Ep[f(X)] —Eo[f(Y)]|?

Suppose we have a solution v to Stein equation:

Trv = f — Ep[f]

Step 2: approximate 7pv; using an RKHS function

|Erp[f] — Eqlf]l = ‘EQ [TP'Uf — TPURKHS + TP'URKHS”
< ‘EQ [TP'Uf - TP'URKHS} ‘ + ‘EQ [TP'URKHS”

<Eg HTP’Uf - TP'URKHSH + |lvrkas|l# KSDp (Q)

Stein discrepancy (and norm)

Approximation error

13/28



KSD and Stein equation (2)

|Ep[f] - Eqlf]l <Egq HTP'Uf - TP'URKHSH + [|vrkns||l#,KSDp (Q)

Stein discrepancy (and norm)

Approximation error

Comments:

m Key idea: bounding the error yields an estimate of |Ep[f] — Eo[f]]
B A result: KSDp (Q,) — 0 implies |Ep[f] — Eq,[f]| — 0 if well approximated
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KSD and Stein equation (2)

|Ep[f] - Eqlf]l <Egq HTP'Uf - TP'URKHSH + [|vrkns||l#,KSDp (Q)

Approximation error Stein discrepancy (and norm)

Comments:
m Key idea: bounding the error yields an estimate of |Ep[f] — Eo[f]]
B A result: KSDp (Q,) — 0 implies |Ep[f] — Eq,[f]| — 0 if well approximated

Two questions:
1 Stein equation and solution:

Do we have a solution to 7Tpvr = f — Ep[f]?
What properties does vy have?

2 RKHS — what conditions required to achieve approximation?
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Preparation: Pseudo-Lipschitz functions

A function f : R? — R is pseudo-Lipschitz of order ¢ — 1 if

[f(z) = f(W)l

< C(L+l2ll§™" +|lyll3 ) for all 7,y € RY,
Iz = yll2

15/28



Preparation: Pseudo-Lipschitz functions

A function f : R? — R is pseudo-Lipschitz of order ¢ — 1 if

[f(z) = f(W)l

< C(L+l2ll§™" +|lyll3 ) for all 7,y € RY,
Iz = yll2

Some comments:
m C is a constant; we use C = 1 (and some other conditions)
m g = 1 recovers the usual Lipschitz-ness

m f (and its derivatives) are allowed to grow like deg-g polynomials
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Stein equation and solution
Tevr = f — Eplf]

m Existence of solution depends on P and f

m Solution is often implicit but can be characterised as follows:
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Stein equation and solution

Tevr = f — Eplf]

m Existence of solution depends on P and f

m Solution is often implicit but can be characterised as follows:

Theorem (Erdogdu, Mackey, and Shamir, Neurips 2018)

If f € C3 is pseudo-Lipschitz of order q — 1, under appropriate
conditions on P,

IV v () lop < G(P,£) (1+ [12l1§7H), for 4 € {0,1,2};

v.e., the growth of vy (and deriwatives) is of o(lz||¥ ™)
An appropriate subset F of pLip functions makes ¢;(P, f) independent of specific f
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RKHS to control moments



Conditions on RKHS
Recall Tpvs(z) = f — Ep[f] = O(||z||d) and
Tru(z) = 2(b(z, v(z)) + (m(z), Vu(z))
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Conditions on RKHS
Recall Tpvs(z) = f — Ep[f] = O(||z||d) and
Tru(z) = 2(b(z, v(z)) + (m(z), Vv(z))

Evaluate approximation error |7pvs — TpUrkns| :

| Tpus(2) = Trvrkms ()| (Hlzll2 > r} + H{|z|l2 < 7})
=1
< 2||zl|31{llzll2 > r} +|Tpvr(z) — Trvrkns(z)| H|zl2 < r}

(A):Behaviour at infinity (B):Error in bounded region
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Conditions on RKHS
Recall Tpvs(z) = f — Ep[f] = O(||z||d) and
Tru(z) = 2(b(z, v(z)) + (m(z), Vv(z))

Evaluate approximation error |7pvs — TpUrkns| :

| Tpvs(2z) = Trorkns(z)| (Hllzll2 > 7} + 1{|[z]l2 < 73)
=1
< 2llel3{llzll2 > r} +|Tpvs(z) — Trvrkas(z)| 1{[lz]l2 < r}
(A):Behaviour at infinity (B):Error in bounded region
Desiderata on RKHS H :
m Tp(Hxk) consists of O(||z||2) functions

m Tp(Hx) can approximate z — ||z||31{||z| > r}
m Hx can approximate any function up to first derivatives
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Conditions on RKHS (contd.)

Proposition
RKHS defined by kernel K = kld with

k(z,y) = w(z)w(y) (Z(m, ) + %+ (z,y) >

VT2 +2lPV T + P

satisfies the desiderata if
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Conditions on RKHS (contd.)
Proposition

RKHS defined by kernel K = kld with

(el 7-2-|-<:z:,y)
Bz, y) = w(z)u(y) (f(w,yHWuuzuzwuuyw)

satisfies the desiderata if

1 £ 1s translation invariant and C§-universal
(e.g., Matérn, Gaussian, IMQ kernels)

2 w(s) = (v +||=|lf) """

3 The P-targeting diffusion is dissipative; i.e.,

2(b(z), z) + trfm(z)] < —allz|| + B
fora,B>0

19/28



Main result: KSD bound on pLip metric

Theorem (Informal bound)

For any € > 0, we have
sup [E¢lf] - Eolf]| Scra (9(e™) - KSDp(Q)) +¢
q

where
m F, ~ {1-pseudo Lipschitz functions of order q — 1}
mcpg>0

m g: increasing function

20/28



Main result: KSD bound on pLip metric

Theorem (Informal bound)

For any € > 0, we have
sup [E¢lf] - Eolf]| Scra (9(e™) - KSDp(Q)) +¢
q

where
m F, ~ {1-pseudo Lipschitz functions of order q — 1}
mcpg>0
m g: increasing function
For sequence of distributions {Q1, @, ...},
K8Dp (Qn) 0= sup [Ep[f] —Eq,[f]] =0
q

"KSD convergence implies moment convergence”
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Matérn KSD bound on pLip metric

Theorem
There exist cp g, Cy,q > 0 such that

1
sup |Ep[f] — Eglf]] <cp.q - KSDp (Q) T +om
feF,

if £ 1s chosen as

ol—(d/2+v)

{z,y) = m”x —yl5 K- (llz — yll2),

where K_,, 1s the Bessel function of the second kind and v > 1
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Experiments
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Toy experiment 1: variance perturbation

Convergence of contaminated distribution

P = N(0, 1d), O, = (1 _ an) P+ nil/\/{o, (n + 1)1d}

m @, converges P in distribution but not in variance

m Check KSD with IMQ kernel £(z,y) = (1+ ||z — y|2) "/
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Toy experiment 1: variance perturbation

Convergence of contaminated distribution

1 1
P=N(0, Id ={l-— | P+ ——NJ0 DId
N(0, 1d), Qn ( n+l> + N0 (n + 1)1d}

B @, converges P in distribution but not in variance

m Check KSD with IMQ kernel £(z,y) = (1+ ||z — y|2) "/

— IMQ -—-= IMQsum (lin.) - IMQ sum (quad.)
KSD(Pa Qn,s\")z .
10! Increase n with N fixed:

1 R 1.

Qn,N = (1—7) Py + Ny
n+1 n+1
\\.
10-! AN N N
™ Py =nN"" Sx., Ny =N"1* 53

102 10° 108
Sequence index n
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Toy experiment 1: variance perturbation

Convergence of contaminated distribution

1 1
P=N(0, Id ={l-— | P+ ——NJ0 DId
N(0, 1d), Qn ( n+l> + N0 (n + 1)1d}

B @, converges P in distribution but not in variance

m Check KSD with IMQ kernel £(z,y) = (1+ ||z — y|2) "/

— IMQ -==IMQ sum (lin.) IMQ sum (quad.)
KSD(Pa Qfl“\")z
102 =~ . Increase N while n fixed at # = 108
o (., 1 . 1
10 Qn,N—(l —— Py + +1NN
1072 = “KSD overestimated for small N”
A)
10? 10
Sample size N
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Toy experiment 1: variance perturbation

Convergence of contaminated distribution
1 1
P=N(0, Id ={l-— | P+ ——NJ0 1Id
N(0, 1d), On ( n—|—1> TV 0 ld)
B @, converges P in distribution but not in variance

m Check KSD with IMQ kernel £(z,y) = (1+ ||z — y|2) "/

— IMQ -==IMQ sum (lin.) IMQ sum (quad.)

KSD(P~ QVI,A\')Z
10!

m Linear growth # enough to
detect non-convergence

m Variance non-convergence
07 N detected by kernel with
AN AR RS AETY quadratic growth

10? 10° 108
Sequence index n
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Toy experiment 2: heavy-tailed target

o\ L
2
<1+ ||x||2>
v

m Langevin diffusion o(z) = Id does not satisfy the required conditions

m [t6 diffusion with diffusion coefficient o(z) = 1/1 + v—1||z||31d does

Standard Student’s t-distribution

d+v
p(z) = P( : 7)r

I'(z)v

[NIESH
[SIH
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Toy experiment 2: heavy-tailed target

o\ L
2
<1+ ||x||2>
v

m Langevin diffusion o(z) = Id does not satisfy the required conditions

m [t6 diffusion with diffusion coefficient o(z) = 1/1 + v—1||z||31d does
m Recall: Stein kernel for diffusion KSD

Standard Student’s t-distribution

d+v
p(z) = P< : 7)r

I'(z)v

[NIESH
[SIH

(@, 9) = - s (Vo (Vs (p()m(@) K (2, v)m(y) p(9)

— use m(z) = o(z)o(z)" = (1 +vY|z/2)1d
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Mean perturbation with heavy-tailed target
Convergence of contaminated distribution

_ —(v+d)/2
p(z) o (1+v7Y<|3)

— (1=
@n < n + 1)
(Qn, converges P in distribution but not in mean)

1
P+ _——N{(n+1)1,1d}

- KSD --- DKSD m Both use proposed k& with IMQ
KSD(P, Qn.x) m Langevian KSD (IMQ) fails to
10° ol detect non-convergence
/”/ m DKSD detectes mean
o L non-convergence
107!

10! 103
Sequence index n
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Summary

1 Kernel Stein discrepancy: computable discrepancy measure
2 Clarified conditions when KSD implies moment convergence

3 Presented a practical kernel

m Reference (to be updated soon, hopefully):
Controlling Moments with Kernel Stein Discrepancies
Heishiro Kanagawa, Alessandro Barp, Carl-Johann Simon-Gabriel,
Arthur Gretton, Lester Mackey
https://arxiv.org/abs/2211.05408

m Python code:
https://github.com/noukoudashisoup/ksd-moment
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https://arxiv.org/abs/2211.05408
https://github.com/noukoudashisoup/ksd-moment

Questions?
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Key assumptions on diffusion

Required assumptions:
1 Dissipativity
2 2
Apllzllz < —allz|]z + B,

where Apf(z) = (b(z), Vf(2)) + 3(o(z)o(z) ", V?f(z))

2 Wasserstein decay (p needs to be fast-decaying)

nf  B[)\ZF - 2] < p(B)z — ylls for 7,y € RP
couplings(ZF,2})
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