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Regression under physical constraints

Aim : forecast of physical phenomena (oceanography)
→ unknown function u

At our disposal : database w.r.t. u : B = {u(z1), ..., u(zn)}, probably
limited.
Physical model (Partial differential equation, PDE) :

∂u

∂t
= D

∂2u

∂x2 + f

Objective : approximate u(x , t) for all (x , t) (regression)

Idea : combine database and physics using probabilistic/Bayesian
regression methods.
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Example of application : wave equation

Direct numerical simulation Reconstruction with GPR

I. Henderson (INSA Toulouse/IMT) GPR and PDEs LIKE23, June 28th 2023 6 / 41



Gaussian processes

Gaussian process over D ⊂ Rd : (U(z))z∈D : family of Gaussian RVs
such that the law of any vector of the form (U(z1), ...,U(zn)) is a
Gaussian multivariate normal distribution.

Mean m(z) := E[U(z)] and covariance k(z , z ′) := Cov(U(z),U(z ′)) :

U(z) ∼ GP(m, k)

−→ k is a positive semi-definite function : k(z , z ′) = k(z ′, z) and
∀(z1, ..., zn) ∈ Dn, (k(xi , xj))1≤i ,j≤n is PSD.

∃U ∼ PG (0, k) ⇐⇒ k is positive semi-definite.

Sample paths : given ω ∈ Ω, Uω : z 7→ U(z)(ω).
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Role of the covariance function

Let ω ∈ Ω, the associated sample path is U(ω) : z 7→ U(z)(ω).

Figure 1 – Brownian motion : k(x , y) = min(x , y)
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Role of the covariance function

Let ω ∈ Ω be a sample, the associated sample path is U(ω) : z 7→ U(z)(ω).

Figure 2 – Matérn 1/2 : k(x , y) = σ2 exp(−|x − y |/`), σ = 1, ` = 2
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Role of the covariance function

Let ω ∈ Ω be a sample, the associated sample path is U(ω) : z 7→ U(z)(ω).

Figure 3 – Gaussian : k(x , y) = σ2 exp(−|x − y |2/2`2), σ = 1, ` = 0.5
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Role of the covariance function

Let ω ∈ Ω be a sample, the associated sample path is U(ω) : z 7→ U(z)(ω).

Figure 4 – Periodic Matérn 3/2 : σ = 1, ` = 1 and
k(x , y) = σ2(1 + | sin(πx)− sin(πy)|/`) exp(−| sin(πx)− sin(πy)|/`)
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Gaussian process regression (Kriging)

Unknown function z ∈ D 7−→ u(z), data B = {u(z1), ..., u(zn)}

Model z 7−→ u(z) as a sample path of a GP (GP prior)
(Uz)z∈D ∼ PG (m(z), k(z , z ′))

We condition U on the data :
V (z) = [U(z)|U(z1) = u(z1), ...,U(zn) = u(zn)] (GP posterior). We
obtain

V (z) ∼ PG (m̃(z), k̃(z , z ′))

m̃ et k̃ given by the Kriging formulas.

Prediction/estimation : ∀z ∈ D, we predict u(z) with m̃(z) :
u(z) ' m̃(z), associated uncertainty k̃(z , z) = Var(V (z))
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Kriging formulas

Denote uobs = (u(z1), ..., u(zn)) the data, Kij := k(zi , zj) and
k(Z , z)i := k(zi , z). Then the a posteriori mean and covariance are given
by {

m̃(z) = k(Z , z)TK−1uobs∈ Span(k(z1, ·), ..., k(zn, ·)),

k̃(z , z ′) = k(z , z ′)− k(Z , z)TK−1k(Z , z ′).

Assume that Lu = 0, L linear (prior knowledge). k is adapted to this
constraint if Lm̃ = 0, i.e. Lk(z , ·) = 0 for all z .

Apply this when L is a PDE ! Conservation of mass, momentum, energy...
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Partial derivatives in dimension d : notations

Let α ∈ Nd , α = (α1, ..., αd). We denote

∂α := (∂x1)α1 ...(∂xd )αd . (1)

Order of differentiation : |α| := α1 + ...+ αd .

Linear differential operator of order m :

L =
∑
|α|≤m

aα∂
α (2)
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Solutions of partial differential equations

Consider a linear PDE Lu = f , or ∂tu = Lu, u(t = 0) = u0.
First difficulty : what is a solution to a PDE ?

Strong solution : PDE imposed pointwise, (Lu)(x) = f (x) ∀x .

Weak solution : PDE is true when “tested” against many finitely
smooth functions.
The PDE is turned into a problem of representation of continuous
linear forms in some Sobolev space (Hilbert or Banach).
Note : PDE dependent.

Distributional solution (L. Schwartz) : PDE is true when “tested”
against compactly supported smooth functions. The PDE is turned
into a problem of representation of continuous linear forms in some
topological vector space (often non normable).
Note : very general (minimal regularity assumptions).
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Regularity theory for PDEs

Second difficulty : regularity theory.

Elliptic (Poisson, Laplace) or parabolic (heat) PDEs : solution is
(much) smoother than the source term.

Hyperbolic PDEs : advection

∂tu + c∂xu = 0. (3)

Solution given by u(x , t) = u0(x − ct).
→ u(·, t) as smooth as u0.Also, what is the meaning of the PDE if u0
is discontinuous ?

Basic tool for regularity theory : Sobolev spaces.
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Today’s topic

Target function u : D → R, solution of some linear PDE Lu = 0, regress u
w.r.t. + dataset {u(z1), ..., u(zn)} (or other linear forms).

Aim for today : identify the GP priors U ∼ GP(0, k) which take into
account the (properties of the) PDE, at the level of the sample paths.
How to choose k such that

such that the sample paths of U verify LUω = 0, in the sense of
distributions, almost surely.
such that the sample paths of U have a given Sobolev regularity (e.g.
that associated to the PDE), almost surely.

Note :
One may have u ∈ Hm(Rd) and u /∈ C 0(Rd) (u ∈ C 0 if m > d/2).
Hence, no continuity assumptions on the GP ( !).
No regularity assumptions on open set D. Thus no fractional Sobolev
spaces or Fourier methods.
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Sobolev regularity of
Gaussian processes
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Derivatives with finite energy and Sobolev spaces

Some functions are "almost" differentiable : h(x) = max(0, 1− |x |).

Figure 5 – Left : h(x). Right : h′(x) (hopefully).

Unfortunately, h′ /∈ C 0... but h′ ∈ L2 (finite energy) !

A function g is the weak derivative of h if for all ϕ ∈ C∞c (R),∫
R
h(x)ϕ′(x)dx = −

∫
R
g(x)ϕ(x)dx .

We then define

H1(R) := {u ∈ L2(R) : u′ exists in the weak sense and u′ ∈ L2(R)},
Hm(D) := {u ∈ L2(D) : ∀ |α| ≤ m, ∂αu exists ITWS and ∂αu ∈ L2(D)}.
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Sobolev spaces and PDEs

Energy functionals (“physical interpretation”) :

Parabolic : ∂t −∆u = 0, (x , t) ∈ Rd × R+.

1
2
∂t‖u(·, t)‖2L2 = −‖∇u(·, t)||2L2 < 0 (diffusion). (4)

Hyperbolic : wave, ∂2
tt −∆u = 0.

∂t

(
‖∂tu(·, t)‖2L2 + ‖∇u(·, t)‖2L2

)
= 0 (conservation). (5)

Likewise, advection : if ∂tu + ∂xu = 0, then ∂t‖u(·, t)‖Lp = 0.

Theory : Lax-Milgram for elliptic PDEs. More generally, Sobolev
spaces are separable Banach spaces, reflexive when 1 < p < +∞.

Numerical methods : finite element method, ...
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L2 regularity of Gaussian processes

Before understanding Hm regularity of GPs we need to understand their L2

regularity. A GP is measurable if the map (ω, x) 7→ U(x)(ω) is measurable.

Integral criterion :

P
(
U ∈ L2(D)

)
= 1 ⇐⇒

∫
D
k(x , x)dx < +∞. (6)

Comes from E[
∫
U(x)2dx ] =

∫
E[U(x)2]dx =

∫
k(x , x)dx .

Spectral/Mercer criterion : denote Ek : L2(D)→ L2(D) the operator

(Ek f )(x) :=

∫
k(x , y)f (y)dy . (7)

If
∫
k(x , x)dx < +∞, then (...) for some (φn) ⊂ L2, ONB

(eigenvectors of Ek) and (λn) ⊂ R+ (eigenvalues of Ek)

k(x , y) =
+∞∑
n=0

λnφn(x)φn(y) in L2(D ×D) (“Mercer”). (8)
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L2 regularity of Gaussian processes

Equivalently, set ψn = λ
1/2
n φn, then ‖ψn‖22 = λn and

k(x , y) =
+∞∑
n=0

ψn(x)ψn(y) in L2(D ×D). (9)

Thus (formally)∫
k(x , x)dx =

∫ +∞∑
n=0

ψn(x)2dx =
+∞∑
n=0

∫
ψn(x)2dx (10)

=
+∞∑
n=0

‖ψn‖22 =
+∞∑
n=0

λn = Tr(Ek) < +∞ (Trace class). (11)

RKHS imbedding criterion : observe that Hk ⊂ L2(D). Denote I the
associated embedding, then II∗ = Ek is trace class (“Driscoll”).
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Sobolev regularity of Gaussian processes

Proposition 1 (H. [2022])
Let (U(z))z∈D ∼ GP(0, k) be measurable, we have equivalence between
(i) P({ω ∈ Ω : U(ω) ∈ Hm(D)}) = 1

(ii) For all |α| ≤ m, ∂α,αk ∈ L2(D ×D) and the integral operator Eαk

Eαk : L2(D)→ L2(D), Eαk f (x) =

∫
D
∂α,αk(x , y)f (y)dy

is trace class, with, Tr(Eαk ) =
∫
D ∂

α,αk(x , x)dx < +∞.
(iii) There exists (φn) ⊂ L2(D) such that k(x , y) =

∑
n φn(x)φn(y) in

L2(D ×D). Moreover, if |α| ≤ m, then φn ∈ Hm(D) and

Tr(Eαk ) =
+∞∑
n=0

‖∂αφn‖22 < +∞, ∂α,αk =
+∞∑
n=0

∂αφn ⊗ ∂αφn in L2(D ×D)

(iv) Hk ⊂ Hm(D). Note the imbedding I : RKHS(k)→ Hm(D), then
Tr(II∗) =

∑
|α|≤m Tr(Eαk ) < +∞.
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Sobolev spaces of non Hilbert type

Nonlinear Schrödinger equation, p > 1 :

i∂tu + ∆u = u|u|p−1. (12)

W 1,p(R) := {u ∈ Lp(R) : u′ exists in the weak sense and u′ ∈ Lp(R)},
Wm,p(D) := {u ∈ Lp(D) : ∀ |α| ≤ m, ∂αu exists ITWS and ∂αu ∈ Lp(D)}.

Lp regularity of GPs : Cp such that if X ∼ N (0, σ2), then E[|X |p] = Cpσ
p.

E
[ ∫
D
U(x)pdx

]
=

∫
D
E[U(x)p]dx = Cp

∫
D
k(x , x)p/2dx . (13)

Likewise for Mercer decomposition : there exists (φn) ⊂ Lp(D) such that∑
‖ψn‖2p < +∞ and

k(x , y) =
+∞∑
n=0

ψn(x)ψn(y) in Lp(D ×D) (“nuclear”). (14)
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Sobolev regularity of Gaussian processes : Banach case
Wm,p, 1 < p < +∞,m ∈ N
Proposition 2 (H. [2022])
Let (U(z))z∈D ∼ GP(0, k) be measurable, we have equivalence between
(i) P({ω ∈ Ω : U(ω) ∈Wm,p(D)}) = 1
(ii) For all |α| ≤ m, ∂α,αk ∈ Lp(D ×D) and the integral operator Eαk

Eαk : Lq(D)→ Lp(D), Eαk f (x) =

∫
D
∂α,αk(x , y)f (y)dy

is symmetric, nonnegative and nuclear : there exists (φαn ) ⊂ Lp(D) such
that ∂α,αk(x , y) =

∑
n ψ

α
n (x)ψαn (y) in Lp(D ×D) verifying

+∞∑
n=0

‖ψαn ‖2p < +∞ (+refinements if 1 ≤ p ≤ 2)

(iii) For all |α| ≤ m, ∂α,αk ∈ Lp(D ×D) and
∫
D[∂α,αk(x , x)]p/2dx < +∞.
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Gaussian processes under
linear distributional PDE constraints
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Distributional formulations of PDEs

Let D ⊂ Rd be an open set and consider the PDE

Lu =
∑
|α|≤m

aα∂
αu = 0.

Strong solution : u ∈ Cm(D) et (Lu)(x) = 0 ∀x ∈ D.

Multiply by a test function ϕ ∈ C∞c (D) and integrate over D

∀ϕ ∈ C∞c (D),

∫
D
Lu(x)ϕ(x)dx = 0. (15)

Formal adjoint : L∗v =
∑
|α|≤n(−1)|α|∂α(aαv). Successive integrations by

parts yield distributional solutions :

∀ϕ ∈ C∞c (D),

∫
D
u(x)L∗ϕ(x)dx = 0. (16)

Only requires that u ∈ L1
loc(D), i.e.

∫
K |u| < +∞ for all K ⊂ D compact.
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PDE constrained (Gaussian) random fields

Proposition 3 (H. et al. [2023, to appear])

Let D ⊂ Rd be an open set and L :=
∑
|α|≤n aα∂

α with aα ∈ C|α|(D). Let
U =

(
U(z)

)
z∈D be a centered measurable second order random field with

covariance function k(z , z ′). Assume that σ : z 7−→ k(z , z)1/2 ∈ L1
loc(D).

1) Then P({ω ∈ Ω : U(ω) ∈ L1
loc(D)}) = 1 and L1

loc(D) et
k(z , ·) ∈ L1

loc(D) for all z ∈ D.
2) There is an equivalence between :

P({ω ∈ Ω : L(Uω) = 0 in the sense of distributions}) = 1
∀z ∈ D, L(k(z , ·)) = 0 in the sense of distributions.

Generalises a result from Ginsbourger et al. [2016] to PDE constraints.
Also inherited to conditioned GPs. Example for L = ∂t + c∂x :

k((x , t), (x ′, t ′)) := k0(x − ct, x ′ − ct ′). (17)
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Examples of kernels verifying L(k(z , ·)) = 0 ∀z
Given L, find kL such that L(kL(·, z)) = 0 ∀z ; ∆ =

∑d
i=1 ∂

2
xixi

.

Laplace : ∆u = 0 Mendes and da Costa Júnior [2012], Ginsbourger
et al. [2016]
Heat : ∂t − D∆u = 0 Albert and Rath [2020]
Div/Curl : ∇ · u = 0, ∇× u = 0 Scheuerer and Schlather
[2012],Owhadi [2023b]
Continuum mechanics : Jidling et al. [2018]
Helmholtz : −∆u = λu Albert and Rath [2020]
(non)stationary Maxwell : Wahlstrom et al. [2013], Jidling et al.
[2017],Lange-Hegermann [2018]
3D wave and transport equation : H. et al. [2023, to appear]
See also “latent forces" : Álvarez et al. [2009], López-Lopera et al.
[2021]

Always based on representations of solutions of Lu = 0 of the form

u = Gf
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GPR and the wave equation H. et al. [2023]

Homogeneous 3D wave equation : ∆ := ∂2
xx + ∂2

yy + ∂2
zz{

Lu = 1
c2∂

2
ttu −∆u = �u = 0, (x , t) ∈ R3 × R+,

u(x , 0) = u0(x), ∂tu(x , 0) = v0(x).
(18)

The solution u is represented by (Krichhoff)

u(x , t) =

∫
S
tv0(x − c |t|γ) + u0(x − c |t|γ)− c |t|γ · ∇u0(x − c |t|γ)

dΩ

4π
= (Ft ∗ v0)(x) + (Ḟt ∗ u0)(x), (19)

where Ft = σct/4πc2t and Ḟt = ∂tFt . Assume that u0 and v0 are unknown
→ u0 ∼ PG (0, ku) and v0 ∼ PG (0, kv ), independent. u given by (19) is a
GP with covariance function

k((x , t), (x ′, t ′)) = [(Ft ⊗ Ft′) ∗ kv ](x , x ′) + [(Ḟt ⊗ Ḟt′) ∗ ku](x , x ′). (20)

The kernel k verifies �k((x , t), ·) = 0 for all (x , t) ∈ R3 × R+ (distribs !).
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Estimation of physical parameters and initial conditions

Reconstruction of initial conditions : the Kriging mean verifies
�m̃ = 0. Thus

m̃(·, t = 0) ' u0, ∂tm̃(·, t = 0) ' v0

The kernel k is parametrized by c , θu and θv ; θu and θv may contain
physical information w.r.t. u0 and v0.
Example : initial conditions with compact support yield

ku(x , x ′) = k0
u(x , x ′)1BR(x0,R)(x)1B(x0,R)(x

′) (21)

Thus, (x0,R) ∈ θu. Likewise for v0 (We can also encode symmetries).
→ can be estimated with the marginal likelihood.
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Numerical application

Restrictive framework
Expensive convolutions (4D) → assume radial symmetry (explicit
convolutions)

Solve numerically the wave equation with v0 = 0 and

u0(x) = A1[R1,R2](|x − x∗0 |)

(
1 + cos

(
2π(|x − x∗0 | −

R1+R2
2 )

R2 − R1

))
.

Generate a database : finite difference scheme in [0, 1]3 with scattered
sensors (LHS).
B = {u(xi , tj) + εij , 1 ≤ i ≤ NC , 1 ≤ j ≤ NT},NC = 30, NT = 75.

Kriging with

ku(x , x ′) = k5/2(x − x ′)× 1BR(x0,R)(x)1B(x0,R)(x
′).
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Data visualisation

Figure 6 – Examples of captured signals. red : noiseless signals. Blue : noisy
signals.
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Estimation of physical parameters

Nsensors 3 5 10 15 20 25 30 Target
|x̂0 − x∗0 | 0.204 0.003 0.004 0.008 0.003 0.004 0.015 0

R̂ 0.386 0.432 0.462 0.431 0.414 0.471 0.452 0.25
|ĉ − c∗| 0.084 0.004 0.005 0.005 0.006 0.001 0.004 0
σ̂2

noise 0.917 0.879 0.93 0.99 0.361 0.988 0.377 0.2025
ˆ̀ 0.02 0.02 0.025 0.02 0.035 0.024 0.032 ∼ 0.05
σ̂2 2.367 3.513 4.903 3.168 4.446 4.619 4.79 Unknown
eu
1,rel 1.275 0.157 0.128 0.168 0.11 0.103 0.248 0
eu
2,rel 1.056 0.095 0.082 0.124 0.088 0.064 0.213 0

eu
∞,rel 1.037 0.132 0.128 0.198 0.136 0.101 0.321 0

Table 1 – Estimation of hyperparameters and relative errors
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Reconstruction of initial condition
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Figure 7 – True u0 (left column) vs GPR u0 (right column). 15 sensors were used.
The images correspond to 3D slices at z = 0.5.
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Extension to non linear PDEs

Non linear constraints on k(z , ·) : not realistic (+ GP interpretation
not valid).
Alternative : in Chen et al. [2021], the nonlinear PDE constraint in
applied pointwise on m̃ : modification of the RKHS optimization
problem as

inf
v∈Hk

‖v‖Hk
s.c. N (v(zi ),∇v(zi ), ...) = `i ∀i ∈ {1, ..., n}

Generalizes an approach desribed in Wendland [2004].
Coupling of this approach with strict linear constraints : Owhadi
[2023b] (div/curl/periodicity).
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Conclusion and perspectives

Overall conclusions :
GPR : at the intersection of machine learning, statistical and Bayesian
approaches and functional analysis.

Some research perspectives :
Insert the Sobolev regularity results in the analysis of GPR for PDEs,
e.g. of Chen et al. [2021].
Current research : draw links between numerical methods for PDEs
(finite differences) and some GPR regimes.
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Thank you for your attention !

Contact : henderso@insa-toulouse.fr,iain.pl.henderson@gmail.com
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Comparison with previous results

Steinwart [2019] If Hk ' Ht then P(U ∈ Hs) = 1 if t − s > d/2.
When s ∈ N, reduces to our result as the imbedding Ht → Hs is
Hilbert-Schmidt if t − s > d/2 (Maurey’s theorem).
Scheuerer [2010] : if for all |α| ≤ m and x ∈ D, ∂α,αk(x , ) exists and
x 7→ ∂α,αk(x , x) is continuous and∫

D
∂α,αk(x , x)dx < +∞, (22)

then P(U ∈ Hm) = 1. We removed the continuity assumptions and
added the Gaussianity assumption. We obtain a NSC.
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Reproducing kernel Hilbert spaces

Let k : D ×D → R a psotive semi-definite function. We define Hk as

Hk :=

{+∞∑
i=1

aik(zi , ·) where (ai ) ⊂ R, (zi ) ⊂ D and
+∞∑
i ,j=1

aiajk(zi , zj) < +∞
}

endowed with the inner product〈 +∞∑
i=1

aik(xi , ·),
+∞∑
j=1

bjk(yj , ·)
〉

:=
+∞∑
i ,j=1

aibjk(xi , yj).

The function k verifies the reproducing properties〈
k(z , ·), k(z ′, ·)

〉
= k(z , z ′) and

〈
k(z , ·), f

〉
= f (z) ∀f ∈ Hk
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Details on Ft and Ḟt

−→ Ft = σct/4πc2t means that

∫
R3

f (x)Ft(dx) =
t

4π

∫ 2π

0

∫ π

0
f (ctγ) sin θdθdϕ =

t

4π

∫
S(0,1)

f (ctγ)dΩ

where γ is the unit length vector γ = (sin θ cosϕ, sin θ sinϕ, cos θ)T .

−→ Convolution between functions and measures :

(f ∗ g)(x) =

∫
R3

g(x − y)f (y)dy (µ ∗ g)(x) =

∫
R3

g(x − y)µ(dy)

−→ Ḟt = ∂tFt means that

〈Ḟt , f 〉 = ∂t

∫
f (x)dFt(x)

=
1
4π

∫
S(0,1)

f (ctγ)dΩ +
c

4π

∫
S(0,1)

∇f (ctγ) · γdΩ
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−→ Ft = σct/4πc2t means that∫
R3

f (x)Ft(dx) =
t

4π

∫ 2π

0

∫ π

0
f (ctγ) sin θdθdϕ =

t

4π

∫
S(0,1)

f (ctγ)dΩ

where γ is the unit length vector γ = (sin θ cosϕ, sin θ sinϕ, cos θ)T .

−→ Convolution between functions and measures :

(f ∗ g)(x) =

∫
R3

g(x − y)f (y)dy (µ ∗ g)(x) =

∫
R3

g(x − y)µ(dy)
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Radial symmetry formulas

[(Ft ⊗ Ft′) ∗ kv ](x , x ′)

=
sgn(tt ′)

16c2rr ′

∑
ε,ε′∈{−1,1}

εε′Kv
(
(r + εct)2, (r ′ + ε′c |t ′|)2)

[(Ḟt ⊗ Ḟt′) ∗ ku](x , x ′)

=
1

4rr ′
∑

ε,ε′∈{−1,1}

(r + εct)(r ′ + ε′c |t ′|)ku
(
(r + εct)2, (r ′ + ε′c |t ′|)2)
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A word on GPR and neural networks

Certain Gaussian processes as limits of one layer neural netwokrs with
infinitely many neurons (Rasmussen and Williams [2006], Section
4.2.3).

Regression with neural networks as GPR with a kernel learnt from data
(Owhadi [2023a] ; Mallat, collège de France).

GPR : "only" current contender (physics informed) neural networks, cf
Chen et al. [2021] for a discussion.
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Point source localization

Assume that u0 ≡ 0 and that v0 is almost a point source at x∗0 : we use the
kernels

kRv (x , x ′) = kv (x , x ′)
1B(x0,R)(x)

4πR3/3
1B(x0,R)(x

′)

4πR3/3
(23)

k((x , t), (x ′, t ′)) = [(Ft ⊗ Ft′) ∗ kRv ](x , x ′) (24)

with R � 1. Hyperparameters of k : (θv , x0,R, c) We fix θv ,R and c to
the "right values" : L(θ) = L(x0).

Question : behaviour of x0 7→ L(x0) ?
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Minimize negative marginal likelihood ≡ GPS localization

Figure : negative log
marginal likelihood.

Displayed values : less
than 2.035× 109.

× : sensor locations.

× : source location.

See H. et al. [2023]
for study/proofs.

I. Henderson (INSA Toulouse/IMT) GPR and PDEs LIKE23, June 28th 2023 54 / 41


	The problem
	Regression under physical constraints
	Gaussian process (regression)

	Imposing physical constraints on Gaussian processes
	The problem with PDEs...
	Sobolev regularity of Gaussian processes
	Linear PDE constraints on Gaussian processes

	GPR for the wave equation
	Wave equation tailored covariance functions
	Solving inverse problems
	Numerical application

	Conclusion and perspectives
	Références

	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


