Physics informed Gaussian processes and kernels : theory with applications

lain Henderson
INSA Toulouse/IMT

LIKE23, June $28^{\text {th }} 2023$

Contact: iain.pl.henderson@gmail.com

Academic context

- Third year PhD student at the Mathematics Institute of Toulouse/INSA Toulouse, advised by Pascal Noble (Partial differential equations) and Olivier Roustant (Statistics and optimization).
- Funded by the SHOM (Service Hydrographique et Océanographique de la Marine), contact : Rémy Baraille

Outline

(1) The problem

- Regression under physical constraints
- Gaussian process (regression)
(2) Imposing physical constraints on Gaussian processes
- The problem with PDEs...
- Sobolev regularity of Gaussian processes
- Linear PDE constraints on Gaussian processes
(3) GPR for the wave equation
- Wave equation tailored covariance functions
- Solving inverse problems
- Numerical application
(4) Conclusion and perspectives

Outline of the presentation

(1) The problem

- Regression under physical constraints
- Gaussian process (regression)
(2) Imposing physical constraints on Gaussian processes
- The problem with PDEs...
- Sobolev regularity of Gaussian processes
- Linear PDE constraints on Gaussian processes
(3) GPR for the wave equation
- Wave equation tailored covariance functions
- Solving inverse problems
- Numerical application
(4) Conclusion and perspectives

Regression under physical constraints

- Aim : forecast of physical phenomena (oceanography)
\rightarrow unknown function u
- At our disposal : database w.r.t. $u: B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$, probably limited.
- Physical model (Partial differential equation, PDE) :

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+f
$$

- Objective : approximate $u(x, t)$ for all (x, t) (regression)

Regression under physical constraints

- Aim : forecast of physical phenomena (oceanography)
\rightarrow unknown function u
- At our disposal : database w.r.t. $u: B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$, probably limited.
- Physical model (Partial differential equation, PDE) :

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+f
$$

- Objective : approximate $u(x, t)$ for all (x, t) (regression)
- Idea : combine database and physics using probabilistic/Bayesian regression methods.

Example of application : wave equation

Direct numerical simulation

$K<\measuredangle \Delta \gg 1 \rightarrow+ \pm$

Reconstruction with GPR

$K<\measuredangle \Delta \gg 1 \rightarrow+\rightarrow$

Gaussian processes

- Gaussian process over $\mathcal{D} \subset \mathbb{R}^{d}:(U(z))_{z \in \mathcal{D}}$: family of Gaussian RV s such that the law of any vector of the form $\left(U\left(z_{1}\right), \ldots, U\left(z_{n}\right)\right)$ is a Gaussian multivariate normal distribution.

Gaussian processes

- Gaussian process over $\mathcal{D} \subset \mathbb{R}^{d}:(U(z))_{z \in \mathcal{D}}$: family of Gaussian $R V_{s}$ such that the law of any vector of the form $\left(U\left(z_{1}\right), \ldots, U\left(z_{n}\right)\right)$ is a Gaussian multivariate normal distribution.

Mean $m(z):=\mathbb{E}[U(z)]$ and covariance $k\left(z, z^{\prime}\right):=\operatorname{Cov}\left(U(z), U\left(z^{\prime}\right)\right)$:

$$
U(z) \sim G P(m, k)
$$

$\longrightarrow \mathrm{k}$ is a positive semi-definite function : $k\left(z, z^{\prime}\right)=k\left(z^{\prime}, z\right)$ and $\forall\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{D}^{n},\left(k\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}$ is PSD.

- $\exists U \sim P G(0, k) \Longleftrightarrow k$ is positive semi-definite.

Gaussian processes

- Gaussian process over $\mathcal{D} \subset \mathbb{R}^{d}:(U(z))_{z \in \mathcal{D}}$: family of Gaussian $R V s$ such that the law of any vector of the form $\left(U\left(z_{1}\right), \ldots, U\left(z_{n}\right)\right)$ is a Gaussian multivariate normal distribution.

Mean $m(z):=\mathbb{E}[U(z)]$ and covariance $k\left(z, z^{\prime}\right):=\operatorname{Cov}\left(U(z), U\left(z^{\prime}\right)\right)$:

$$
U(z) \sim G P(m, k)
$$

$\longrightarrow \mathrm{k}$ is a positive semi-definite function : $k\left(z, z^{\prime}\right)=k\left(z^{\prime}, z\right)$ and $\forall\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{D}^{n},\left(k\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}$ is PSD.

- $\exists U \sim P G(0, k) \Longleftrightarrow k$ is positive semi-definite.
- Sample paths : given $\omega \in \Omega, U_{\omega}: z \mapsto U(z)(\omega)$.

Role of the covariance function

Let $\omega \in \Omega$, the associated sample path is $U(\omega): z \mapsto U(z)(\omega)$.

Role of the covariance function

Let $\omega \in \Omega$, the associated sample path is $U(\omega): z \mapsto U(z)(\omega)$.

Figure 1 - Brownian motion: $k(x, y)=\min (x, y)$

Role of the covariance function

Let $\omega \in \Omega$ be a sample, the associated sample path is $U(\omega): z \mapsto U(z)(\omega)$.

Figure $2-$ Matérn $1 / 2: k(x, y)=\sigma^{2} \exp (-|x-y| / \ell), \sigma=1, \ell=2$

Role of the covariance function

Let $\omega \in \Omega$ be a sample, the associated sample path is $U(\omega): z \mapsto U(z)(\omega)$.

Figure $3-$ Gaussian: $k(x, y)=\sigma^{2} \exp \left(-|x-y|^{2} / 2 \ell^{2}\right), \sigma=1, \ell=0.5$

Role of the covariance function

Let $\omega \in \Omega$ be a sample, the associated sample path is $U(\omega): z \mapsto U(z)(\omega)$.

Figure 4 - Periodic Matérn 3/2: $\sigma=1, \ell=1$ and $k(x, y)=\sigma^{2}(1+|\sin (\pi x)-\sin (\pi y)| / \ell) \exp (-|\sin (\pi x)-\sin (\pi y)| / \ell)$

Gaussian process regression (Kriging)

- Unknown function $z \in \mathcal{D} \longmapsto u(z)$, data $B=\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$
- Model $z \longmapsto u(z)$ as a sample path of a GP (GP prior) $\left(U_{z}\right)_{z \in D} \sim P G\left(m(z), k\left(z, z^{\prime}\right)\right)$
- We condition U on the data :
$V(z)=\left[U(z) \mid U\left(z_{1}\right)=u\left(z_{1}\right), \ldots, U\left(z_{n}\right)=u\left(z_{n}\right)\right]$ (GP posterior). We obtain

$$
V(z) \sim P G\left(\tilde{m}(z), \tilde{k}\left(z, z^{\prime}\right)\right)
$$

\tilde{m} et \tilde{k} given by the Kriging formulas.

- Prediction/estimation : $\forall z \in \mathcal{D}$, we predict $u(z)$ with $\tilde{m}(z)$: $u(z) \simeq \tilde{m}(z)$, associated uncertainty $\tilde{k}(z, z)=\operatorname{Var}(V(z))$

Kriging formulas

Denote $u_{\text {obs }}=\left(u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right)$ the data, $K_{i j}:=k\left(z_{i}, z_{j}\right)$ and $k(Z, z)_{i}:=k\left(z_{i}, z\right)$. Then the a posteriori mean and covariance are given by

$$
\begin{cases}\tilde{m}(z) & =k(Z, z)^{T} K^{-1} u_{o b s} \in \operatorname{Span}\left(k\left(z_{1}, \cdot\right), \ldots, k\left(z_{n}, \cdot\right)\right), \\ \tilde{k}\left(z, z^{\prime}\right) & =k\left(z, z^{\prime}\right)-k(Z, z)^{T} K^{-1} k\left(Z, z^{\prime}\right)\end{cases}
$$

Kriging formulas

Denote $u_{\text {obs }}=\left(u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right)$ the data, $K_{i j}:=k\left(z_{i}, z_{j}\right)$ and $k(Z, z)_{i}:=k\left(z_{i}, z\right)$. Then the a posteriori mean and covariance are given by

$$
\begin{cases}\tilde{m}(z) & =k(Z, z)^{T} K^{-1} u_{o b s} \in \operatorname{Span}\left(k\left(z_{1}, \cdot\right), \ldots, k\left(z_{n}, \cdot\right)\right) \\ \tilde{k}\left(z, z^{\prime}\right) & =k\left(z, z^{\prime}\right)-k(Z, z)^{T} K^{-1} k\left(Z, z^{\prime}\right)\end{cases}
$$

Assume that $L u=0, L$ linear (prior knowledge). k is adapted to this constraint if $L \tilde{m}=0$, i.e. $L k(z, \cdot)=0$ for all z.

Kriging formulas

Denote $u_{o b s}=\left(u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right)$ the data, $K_{i j}:=k\left(z_{i}, z_{j}\right)$ and $k(Z, z)_{i}:=k\left(z_{i}, z\right)$. Then the a posteriori mean and covariance are given by

$$
\begin{cases}\tilde{m}(z) & =k(Z, z)^{T} K^{-1} u_{o b s} \in \operatorname{Span}\left(k\left(z_{1}, \cdot\right), \ldots, k\left(z_{n}, \cdot\right)\right) \\ \tilde{k}\left(z, z^{\prime}\right) & =k\left(z, z^{\prime}\right)-k(Z, z)^{T} K^{-1} k\left(Z, z^{\prime}\right)\end{cases}
$$

Assume that $L u=0, L$ linear (prior knowledge). k is adapted to this constraint if $L \tilde{m}=0$, i.e. $L k(z, \cdot)=0$ for all z.

Apply this when L is a PDE! Conservation of mass, momentum, energy...

Outline of the presentation

(1) The problem

- Regression under physical constraints
- Gaussian process (regression)
(2) Imposing physical constraints on Gaussian processes
- The problem with PDEs...
- Sobolev regularity of Gaussian processes
- Linear PDE constraints on Gaussian processes
(3) GPR for the wave equation
- Wave equation tailored covariance functions
- Solving inverse problems
- Numerical application

4 Conclusion and perspectives

Partial derivatives in dimension d : notations

Let $\alpha \in \mathbb{N}^{d}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$. We denote

$$
\begin{equation*}
\partial^{\alpha}:=\left(\partial_{x_{1}}\right)^{\alpha_{1}} \ldots\left(\partial_{x_{d}}\right)^{\alpha_{d}} . \tag{1}
\end{equation*}
$$

Order of differentiation : $|\alpha|:=\alpha_{1}+\ldots+\alpha_{d}$.
Linear differential operator of order m :

$$
\begin{equation*}
L=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} \tag{2}
\end{equation*}
$$

Solutions of partial differential equations

Consider a linear PDE $L u=f$, or $\partial_{t} u=L u, u(t=0)=u_{0}$. First difficulty: what is a solution to a PDE ?

Solutions of partial differential equations

Consider a linear PDE $L u=f$, or $\partial_{t} u=L u, u(t=0)=u_{0}$. First difficulty: what is a solution to a PDE ?

- Strong solution : PDE imposed pointwise, $(L u)(x)=f(x) \forall x$.

Solutions of partial differential equations

Consider a linear PDE $L u=f$, or $\partial_{t} u=L u, u(t=0)=u_{0}$. First difficulty: what is a solution to a PDE ?

- Strong solution : PDE imposed pointwise, $(L u)(x)=f(x) \forall x$.
- Weak solution : PDE is true when "tested" against many finitely smooth functions.
The PDE is turned into a problem of representation of continuous linear forms in some Sobolev space (Hilbert or Banach). Note : PDE dependent.

Solutions of partial differential equations

Consider a linear PDE $L u=f$, or $\partial_{t} u=L u, u(t=0)=u_{0}$. First difficulty: what is a solution to a PDE?

- Strong solution : PDE imposed pointwise, $(L u)(x)=f(x) \forall x$.
- Weak solution : PDE is true when "tested" against many finitely smooth functions.
The PDE is turned into a problem of representation of continuous linear forms in some Sobolev space (Hilbert or Banach). Note : PDE dependent.
- Distributional solution (L. Schwartz) : PDE is true when "tested" against compactly supported smooth functions. The PDE is turned into a problem of representation of continuous linear forms in some topological vector space (often non normable). Note : very general (minimal regularity assumptions).

Regularity theory for PDEs

Second difficulty: regularity theory.

Regularity theory for PDEs

Second difficulty: regularity theory.

- Elliptic (Poisson, Laplace) or parabolic (heat) PDEs: solution is (much) smoother than the source term.

Regularity theory for PDEs

Second difficulty: regularity theory.

- Elliptic (Poisson, Laplace) or parabolic (heat) PDEs: solution is (much) smoother than the source term.
- Hyperbolic PDEs : advection

$$
\begin{equation*}
\partial_{t} u+c \partial_{x} u=0 \tag{3}
\end{equation*}
$$

Solution given by $u(x, t)=u_{0}(x-c t)$.

Regularity theory for PDEs

Second difficulty: regularity theory.

- Elliptic (Poisson, Laplace) or parabolic (heat) PDEs: solution is (much) smoother than the source term.
- Hyperbolic PDEs : advection

$$
\begin{equation*}
\partial_{t} u+c \partial_{x} u=0 \tag{3}
\end{equation*}
$$

Solution given by $u(x, t)=u_{0}(x-c t)$.
$\rightarrow u(\cdot, t)$ as smooth as u_{0}.

Regularity theory for PDEs

Second difficulty: regularity theory.

- Elliptic (Poisson, Laplace) or parabolic (heat) PDEs: solution is (much) smoother than the source term.
- Hyperbolic PDEs : advection

$$
\begin{equation*}
\partial_{t} u+c \partial_{x} u=0 \tag{3}
\end{equation*}
$$

Solution given by $u(x, t)=u_{0}(x-c t)$.
$\rightarrow u(\cdot, t)$ as smooth as u_{0}. Also, what is the meaning of the PDE if u_{0} is discontinuous?

Regularity theory for PDEs

Second difficulty: regularity theory.

- Elliptic (Poisson, Laplace) or parabolic (heat) PDEs : solution is (much) smoother than the source term.
- Hyperbolic PDEs : advection

$$
\begin{equation*}
\partial_{t} u+c \partial_{x} u=0 \tag{3}
\end{equation*}
$$

Solution given by $u(x, t)=u_{0}(x-c t)$.
$\rightarrow u(\cdot, t)$ as smooth as u_{0}. Also, what is the meaning of the PDE if u_{0} is discontinuous?

Basic tool for regularity theory: Sobolev spaces.

Today's topic

Target function $u: \mathcal{D} \rightarrow \mathbb{R}$, solution of some linear PDE $L u=0$, regress u w.r.t. + dataset $\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$ (or other linear forms).

Today's topic

Target function $u: \mathcal{D} \rightarrow \mathbb{R}$, solution of some linear PDE $L u=0$, regress u w.r.t. + dataset $\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$ (or other linear forms).

Aim for today: identify the GP priors $U \sim G P(0, k)$ which take into account the (properties of the) PDE, at the level of the sample paths.

Today's topic

Target function $u: \mathcal{D} \rightarrow \mathbb{R}$, solution of some linear PDE $L u=0$, regress u w.r.t. + dataset $\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$ (or other linear forms).

Aim for today: identify the GP priors $U \sim G P(0, k)$ which take into account the (properties of the) PDE, at the level of the sample paths. How to choose k such that

- such that the sample paths of U verify $L U_{\omega}=0$, in the sense of distributions, almost surely.
- such that the sample paths of U have a given Sobolev regularity (e.g. that associated to the PDE), almost surely.

Today's topic

Target function $u: \mathcal{D} \rightarrow \mathbb{R}$, solution of some linear PDE $L u=0$, regress u w.r.t. + dataset $\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$ (or other linear forms).

Aim for today : identify the GP priors $U \sim G P(0, k)$ which take into account the (properties of the) PDE, at the level of the sample paths. How to choose k such that

- such that the sample paths of U verify $L U_{\omega}=0$, in the sense of distributions, almost surely.
- such that the sample paths of U have a given Sobolev regularity (e.g. that associated to the PDE), almost surely.

Note :

- One may have $u \in H^{m}\left(\mathbb{R}^{d}\right)$ and $u \notin C^{0}\left(\mathbb{R}^{d}\right)\left(u \in C^{0}\right.$ if $\left.m>d / 2\right)$. Hence, no continuity assumptions on the GP (!).

Today's topic

Target function $u: \mathcal{D} \rightarrow \mathbb{R}$, solution of some linear PDE $L u=0$, regress u w.r.t. + dataset $\left\{u\left(z_{1}\right), \ldots, u\left(z_{n}\right)\right\}$ (or other linear forms).

Aim for today : identify the GP priors $U \sim G P(0, k)$ which take into account the (properties of the) PDE, at the level of the sample paths. How to choose k such that

- such that the sample paths of U verify $L U_{\omega}=0$, in the sense of distributions, almost surely.
- such that the sample paths of U have a given Sobolev regularity (e.g. that associated to the PDE), almost surely.

Note :

- One may have $u \in H^{m}\left(\mathbb{R}^{d}\right)$ and $u \notin C^{0}\left(\mathbb{R}^{d}\right)\left(u \in C^{0}\right.$ if $\left.m>d / 2\right)$. Hence, no continuity assumptions on the GP (!).
- No regularity assumptions on open set \mathcal{D}. Thus no fractional Sobolev spaces or Fourier methods.

Sobolev regularity of Gaussian processes

Derivatives with finite energy and Sobolev spaces

Some functions are "almost" differentiable : $h(x)=\max (0,1-|x|)$.

Figure 5 - Left : $h(x)$. Right : $h^{\prime}(x)$ (hopefully).
Unfortunately, $h^{\prime} \notin C^{0} \ldots$ but $h^{\prime} \in L^{2}$ (finite energy)!

Derivatives with finite energy and Sobolev spaces

Some functions are "almost" differentiable : $h(x)=\max (0,1-|x|)$.

Figure 5 - Left : $h(x)$. Right : $h^{\prime}(x)$ (hopefully).
Unfortunately, $h^{\prime} \notin C^{0} \ldots$ but $h^{\prime} \in L^{2}$ (finite energy)!
A function g is the weak derivative of h if for all $\varphi \in C_{c}^{\infty}(\mathbb{R})$,

$$
\int_{\mathbb{R}} h(x) \varphi^{\prime}(x) d x=-\int_{\mathbb{R}} g(x) \varphi(x) d x
$$

Derivatives with finite energy and Sobolev spaces

Some functions are "almost" differentiable : $h(x)=\max (0,1-|x|)$.

Figure 5 - Left : $h(x)$. Right : $h^{\prime}(x)$ (hopefully).
Unfortunately, $h^{\prime} \notin C^{0} \ldots$ but $h^{\prime} \in L^{2}$ (finite energy)!
A function g is the weak derivative of h if for all $\varphi \in C_{c}^{\infty}(\mathbb{R})$,

$$
\int_{\mathbb{R}} h(x) \varphi^{\prime}(x) d x=-\int_{\mathbb{R}} g(x) \varphi(x) d x
$$

We then define $H^{1}(\mathbb{R}):=\left\{u \in L^{2}(\mathbb{R}): u^{\prime}\right.$ exists in the weak sense and $\left.u^{\prime} \in L^{2}(\mathbb{R})\right\}$,
$H^{m}(\mathcal{D}):=\left\{u \in L^{2}(\mathcal{D}): \forall|\alpha| \leq m, \partial^{\alpha} u\right.$ exists ITWS and $\left.\partial^{\alpha} u \in L^{2}(\mathcal{D})\right\}$.

Sobolev spaces and PDEs

- Energy functionals ("physical interpretation") :

Sobolev spaces and PDEs

- Energy functionals ("physical interpretation") :
- Parabolic : $\partial_{t}-\Delta u=0,(x, t) \in \mathbb{R}^{d} \times \mathbb{R}_{+}$.

$$
\begin{equation*}
\frac{1}{2} \partial_{t}\|u(\cdot, t)\|_{L^{2}}^{2}=-\|\nabla u(\cdot, t)\|_{L^{2}}^{2}<0 \quad \text { (diffusion). } \tag{4}
\end{equation*}
$$

Sobolev spaces and PDEs

- Energy functionals ("physical interpretation") :
- Parabolic : $\partial_{t}-\Delta u=0,(x, t) \in \mathbb{R}^{d} \times \mathbb{R}_{+}$.

$$
\begin{equation*}
\frac{1}{2} \partial_{t}\|u(\cdot, t)\|_{L^{2}}^{2}=-\|\nabla u(\cdot, t)\|_{L^{2}}^{2}<0 \quad \text { (diffusion). } \tag{4}
\end{equation*}
$$

- Hyperbolic: wave, $\partial_{t t}^{2}-\Delta u=0$.

$$
\begin{equation*}
\partial_{t}\left(\left\|\partial_{t} u(\cdot, t)\right\|_{L^{2}}^{2}+\|\nabla u(\cdot, t)\|_{L^{2}}^{2}\right)=0 \quad \text { (conservation). } \tag{5}
\end{equation*}
$$

Likewise, advection: if $\partial_{t} u+\partial_{x} u=0$, then $\partial_{t}\|u(\cdot, t)\|_{L^{p}}=0$.

Sobolev spaces and PDEs

- Energy functionals ("physical interpretation") :
- Parabolic : $\partial_{t}-\Delta u=0,(x, t) \in \mathbb{R}^{d} \times \mathbb{R}_{+}$.

$$
\begin{equation*}
\frac{1}{2} \partial_{t}\|u(\cdot, t)\|_{L^{2}}^{2}=-\|\nabla u(\cdot, t)\|_{L^{2}}^{2}<0 \quad \text { (diffusion). } \tag{4}
\end{equation*}
$$

- Hyperbolic: wave, $\partial_{t t}^{2}-\Delta u=0$.

$$
\begin{equation*}
\partial_{t}\left(\left\|\partial_{t} u(\cdot, t)\right\|_{L^{2}}^{2}+\|\nabla u(\cdot, t)\|_{L^{2}}^{2}\right)=0 \quad \text { (conservation). } \tag{5}
\end{equation*}
$$

Likewise, advection: if $\partial_{t} u+\partial_{x} u=0$, then $\partial_{t}\|u(\cdot, t)\|_{L^{p}}=0$.

- Theory : Lax-Milgram for elliptic PDEs. More generally, Sobolev spaces are separable Banach spaces, reflexive when $1<p<+\infty$.
- Numerical methods : finite element method, ...

L^{2} regularity of Gaussian processes

Before understanding H^{m} regularity of GPs we need to understand their L^{2} regularity. A GP is measurable if the map $(\omega, x) \mapsto U(x)(\omega)$ is measurable.

L^{2} regularity of Gaussian processes

Before understanding H^{m} regularity of GPs we need to understand their L^{2} regularity. A GP is measurable if the map $(\omega, x) \mapsto U(x)(\omega)$ is measurable.

- Integral criterion :

$$
\begin{equation*}
\mathbb{P}\left(U \in L^{2}(\mathcal{D})\right)=1 \Longleftrightarrow \int_{\mathcal{D}} k(x, x) d x<+\infty \tag{6}
\end{equation*}
$$

L^{2} regularity of Gaussian processes

Before understanding H^{m} regularity of GPs we need to understand their L^{2} regularity. A GP is measurable if the map $(\omega, x) \mapsto U(x)(\omega)$ is measurable.

- Integral criterion :

$$
\begin{equation*}
\mathbb{P}\left(U \in L^{2}(\mathcal{D})\right)=1 \Longleftrightarrow \int_{\mathcal{D}} k(x, x) d x<+\infty . \tag{6}
\end{equation*}
$$

Comes from $\mathbb{E}\left[\int U(x)^{2} d x\right]=\int \mathbb{E}\left[U(x)^{2}\right] d x=\int k(x, x) d x$.

L^{2} regularity of Gaussian processes

Before understanding H^{m} regularity of GPs we need to understand their L^{2} regularity. A GP is measurable if the map $(\omega, x) \mapsto U(x)(\omega)$ is measurable.

- Integral criterion :

$$
\begin{equation*}
\mathbb{P}\left(U \in L^{2}(\mathcal{D})\right)=1 \Longleftrightarrow \int_{\mathcal{D}} k(x, x) d x<+\infty . \tag{6}
\end{equation*}
$$

Comes from $\mathbb{E}\left[\int U(x)^{2} d x\right]=\int \mathbb{E}\left[U(x)^{2}\right] d x=\int k(x, x) d x$.

- Spectral/Mercer criterion : denote $\mathcal{E}_{k}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D})$ the operator

$$
\begin{equation*}
\left(\mathcal{E}_{k} f\right)(x):=\int k(x, y) f(y) d y . \tag{7}
\end{equation*}
$$

L^{2} regularity of Gaussian processes

Before understanding H^{m} regularity of GPs we need to understand their L^{2} regularity. A GP is measurable if the map $(\omega, x) \mapsto U(x)(\omega)$ is measurable.

- Integral criterion :

$$
\begin{equation*}
\mathbb{P}\left(U \in L^{2}(\mathcal{D})\right)=1 \Longleftrightarrow \int_{\mathcal{D}} k(x, x) d x<+\infty \tag{6}
\end{equation*}
$$

Comes from $\mathbb{E}\left[\int U(x)^{2} d x\right]=\int \mathbb{E}\left[U(x)^{2}\right] d x=\int k(x, x) d x$.

- Spectral/Mercer criterion : denote $\mathcal{E}_{k}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D})$ the operator

$$
\begin{equation*}
\left(\mathcal{E}_{k} f\right)(x):=\int k(x, y) f(y) d y . \tag{7}
\end{equation*}
$$

If $\int k(x, x) d x<+\infty$, then (\ldots) for some $\left(\phi_{n}\right) \subset L^{2}$, ONB
(eigenvectors of \mathcal{E}_{k}) and $\left(\lambda_{n}\right) \subset \mathbb{R}_{+}$(eigenvalues of \mathcal{E}_{k})

$$
\begin{equation*}
k(x, y)=\sum_{n=0}^{+\infty} \lambda_{n} \phi_{n}(x) \phi_{n}(y) \quad \text { in } L^{2}(\mathcal{D} \times \mathcal{D}) \quad \text { ("Mercer"). } \tag{8}
\end{equation*}
$$

L^{2} regularity of Gaussian processes

Equivalently, set $\psi_{n}=\lambda_{n}^{1 / 2} \phi_{n}$, then $\left\|\psi_{n}\right\|_{2}^{2}=\lambda_{n}$ and

$$
\begin{equation*}
k(x, y)=\sum_{n=0}^{+\infty} \psi_{n}(x) \psi_{n}(y) \quad \text { in } L^{2}(\mathcal{D} \times \mathcal{D}) \tag{9}
\end{equation*}
$$

Thus (formally)

$$
\begin{align*}
\int k(x, x) d x & =\int \sum_{n=0}^{+\infty} \psi_{n}(x)^{2} d x=\sum_{n=0}^{+\infty} \int \psi_{n}(x)^{2} d x \tag{10}\\
& =\sum_{n=0}^{+\infty}\left\|\psi_{n}\right\|_{2}^{2}=\sum_{n=0}^{+\infty} \lambda_{n}=\operatorname{Tr}\left(\mathcal{E}_{k}\right)<+\infty \quad \text { (Trace class) } . \tag{11}
\end{align*}
$$

L^{2} regularity of Gaussian processes

Equivalently, set $\psi_{n}=\lambda_{n}^{1 / 2} \phi_{n}$, then $\left\|\psi_{n}\right\|_{2}^{2}=\lambda_{n}$ and

$$
\begin{equation*}
k(x, y)=\sum_{n=0}^{+\infty} \psi_{n}(x) \psi_{n}(y) \quad \text { in } L^{2}(\mathcal{D} \times \mathcal{D}) \tag{9}
\end{equation*}
$$

Thus (formally)

$$
\begin{align*}
\int k(x, x) d x & =\int \sum_{n=0}^{+\infty} \psi_{n}(x)^{2} d x=\sum_{n=0}^{+\infty} \int \psi_{n}(x)^{2} d x \tag{10}\\
& =\sum_{n=0}^{+\infty}\left\|\psi_{n}\right\|_{2}^{2}=\sum_{n=0}^{+\infty} \lambda_{n}=\operatorname{Tr}\left(\mathcal{E}_{k}\right)<+\infty \quad \text { (Trace class) } . \tag{11}
\end{align*}
$$

- RKHS imbedding criterion : observe that $H_{k} \subset L^{2}(\mathcal{D})$. Denote \mathcal{I} the associated embedding, then $\mathcal{I} \mathcal{I}^{*}=\mathcal{E}_{k}$ is trace class ("Driscoll").

Sobolev regularity of Gaussian processes

Proposition 1 (H. [2022])

Let $(U(z))_{z \in \mathcal{D}} \sim G P(0, k)$ be measurable, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$

Sobolev regularity of Gaussian processes

Proposition 1 (H. [2022])

Let $(U(z))_{z \in \mathcal{D}} \sim G P(0, k)$ be measurable, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{2}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is trace class, with, $\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty$.

Sobolev regularity of Gaussian processes

Proposition 1 (H. [2022])

Let $(U(z))_{z \in \mathcal{D}} \sim G P(0, k)$ be measurable, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{2}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is trace class, with, $\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty$.
(iii) There exists $\left(\phi_{n}\right) \subset L^{2}(\mathcal{D})$ such that $k(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y)$ in $L^{2}(\mathcal{D} \times \mathcal{D})$. Moreover, if $|\alpha| \leq m$, then $\phi_{n} \in H^{m}(\mathcal{D})$ and

$$
\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\sum_{n=0}^{+\infty}\left\|\partial^{\alpha} \phi_{n}\right\|_{2}^{2}<+\infty, \partial^{\alpha, \alpha} k=\sum_{n=0}^{+\infty} \partial^{\alpha} \phi_{n} \otimes \partial^{\alpha} \phi_{n} \text { in } L^{2}(\mathcal{D} \times \mathcal{D})
$$

Sobolev regularity of Gaussian processes

Proposition 1 (H. [2022])

Let $(U(z))_{z \in \mathcal{D}} \sim G P(0, k)$ be measurable, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in H^{m}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{2}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{2}(\mathcal{D}) \rightarrow L^{2}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is trace class, with, $\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty$.
(iii) There exists $\left(\phi_{n}\right) \subset L^{2}(\mathcal{D})$ such that $k(x, y)=\sum_{n} \phi_{n}(x) \phi_{n}(y)$ in $L^{2}(\mathcal{D} \times \mathcal{D})$. Moreover, if $|\alpha| \leq m$, then $\phi_{n} \in H^{m}(\mathcal{D})$ and

$$
\operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)=\sum_{n=0}^{+\infty}\left\|\partial^{\alpha} \phi_{n}\right\|_{2}^{2}<+\infty, \partial^{\alpha, \alpha} k=\sum_{n=0}^{+\infty} \partial^{\alpha} \phi_{n} \otimes \partial^{\alpha} \phi_{n} \text { in } L^{2}(\mathcal{D} \times \mathcal{D})
$$

(iv) $H_{k} \subset H^{m}(\mathcal{D})$. Note the imbedding $\mathcal{I}: R K H S(k) \rightarrow H^{m}(\mathcal{D})$, then $\operatorname{Tr}\left(\mathcal{I I}^{*}\right)=\sum_{|\alpha| \leq m} \operatorname{Tr}\left(\mathcal{E}_{k}^{\alpha}\right)<+\infty$.

Sobolev spaces of non Hilbert type

Nonlinear Schrödinger equation, $p>1$:

$$
\begin{equation*}
i \partial_{t} u+\Delta u=u|u|^{p-1} \tag{12}
\end{equation*}
$$

$W^{1, p}(\mathbb{R}):=\left\{u \in L^{p}(\mathbb{R}): u^{\prime}\right.$ exists in the weak sense and $\left.u^{\prime} \in L^{p}(\mathbb{R})\right\}$, $W^{m, p}(\mathcal{D}):=\left\{u \in L^{P}(\mathcal{D}): \forall|\alpha| \leq m, \partial^{\alpha} u\right.$ exists ITWS and $\left.\partial^{\alpha} u \in L^{P}(\mathcal{D})\right\}$.

Sobolev spaces of non Hilbert type

Nonlinear Schrödinger equation, $p>1$:

$$
\begin{equation*}
i \partial_{t} u+\Delta u=u|u|^{p-1} . \tag{12}
\end{equation*}
$$

$W^{1, p}(\mathbb{R}):=\left\{u \in L^{p}(\mathbb{R}): u^{\prime}\right.$ exists in the weak sense and $\left.u^{\prime} \in L^{p}(\mathbb{R})\right\}$, $W^{m, p}(\mathcal{D}):=\left\{u \in L^{p}(\mathcal{D}): \forall|\alpha| \leq m, \partial^{\alpha} u\right.$ exists ITWS and $\left.\partial^{\alpha} u \in L^{p}(\mathcal{D})\right\}$. L^{p} regularity of GPs : C_{p} such that if $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then $\mathbb{E}\left[|X|^{p}\right]=C_{p} \sigma^{p}$.

$$
\begin{equation*}
\mathbb{E}\left[\int_{\mathcal{D}} U(x)^{p} d x\right]=\int_{\mathcal{D}} \mathbb{E}\left[U(x)^{p}\right] d x=C_{p} \int_{\mathcal{D}} k(x, x)^{p / 2} d x \tag{13}
\end{equation*}
$$

Sobolev spaces of non Hilbert type

Nonlinear Schrödinger equation, $p>1$:

$$
\begin{equation*}
i \partial_{t} u+\Delta u=u|u|^{p-1} \tag{12}
\end{equation*}
$$

$W^{1, p}(\mathbb{R}):=\left\{u \in L^{p}(\mathbb{R}): u^{\prime}\right.$ exists in the weak sense and $\left.u^{\prime} \in L^{p}(\mathbb{R})\right\}$, $W^{m, p}(\mathcal{D}):=\left\{u \in L^{p}(\mathcal{D}): \forall|\alpha| \leq m, \partial^{\alpha} u\right.$ exists ITWS and $\left.\partial^{\alpha} u \in L^{p}(\mathcal{D})\right\}$. L^{p} regularity of GPs : C_{p} such that if $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then $\mathbb{E}\left[|X|^{p}\right]=C_{p} \sigma^{p}$.

$$
\begin{equation*}
\mathbb{E}\left[\int_{\mathcal{D}} U(x)^{p} d x\right]=\int_{\mathcal{D}} \mathbb{E}\left[U(x)^{p}\right] d x=C_{p} \int_{\mathcal{D}} k(x, x)^{p / 2} d x \tag{13}
\end{equation*}
$$

Likewise for Mercer decomposition : there exists $\left(\phi_{n}\right) \subset L^{p}(\mathcal{D})$ such that $\sum\left\|\psi_{n}\right\|_{p}^{2}<+\infty$ and

$$
\begin{equation*}
k(x, y)=\sum_{n=0}^{+\infty} \psi_{n}(x) \psi_{n}(y) \quad \text { in } \quad L^{p}(\mathcal{D} \times \mathcal{D}) \quad(\text { "nuclear'" }) \tag{14}
\end{equation*}
$$

Sobolev regularity of Gaussian processes: Banach case $W^{m, p}, 1<p<+\infty, m \in \mathbb{N}$

Proposition 2 (H. [2022])

Let $(U(z))_{z \in \mathcal{D}} \sim G P(0, k)$ be measurable, we have equivalence between (i) $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in W^{m, p}(\mathcal{D})\right\}\right)=1$
(ii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{P}(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_{k}^{α}

$$
\mathcal{E}_{k}^{\alpha}: L^{q}(\mathcal{D}) \rightarrow L^{p}(\mathcal{D}), \quad \mathcal{E}_{k}^{\alpha} f(x)=\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) d y
$$

is symmetric, nonnegative and nuclear : there exists $\left(\phi_{n}^{\alpha}\right) \subset L^{p}(\mathcal{D})$ such that $\partial^{\alpha, \alpha} k(x, y)=\sum_{n} \psi_{n}^{\alpha}(x) \psi_{n}^{\alpha}(y)$ in $L^{p}(\mathcal{D} \times \mathcal{D})$ verifying

$$
\sum_{n=0}^{+\infty}\left\|\psi_{n}^{\alpha}\right\|_{p}^{2}<+\infty \quad(+ \text { refinements if } 1 \leq p \leq 2)
$$

(iii) For all $|\alpha| \leq m, \partial^{\alpha, \alpha} k \in L^{p}(\mathcal{D} \times \mathcal{D})$ and $\int_{\mathcal{D}}\left[\partial^{\alpha, \alpha} k(x, x)\right]^{p / 2} d x<+\infty$.

Gaussian processes under linear distributional PDE constraints

Distributional formulations of PDEs

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and consider the PDE

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} u=0 .
$$

Distributional formulations of PDEs

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and consider the PDE

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} u=0
$$

Strong solution : $u \in C^{m}(\mathcal{D})$ et $(L u)(x)=0 \quad \forall x \in \mathcal{D}$.

Distributional formulations of PDEs

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and consider the PDE

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} u=0 .
$$

Strong solution : $u \in C^{m}(\mathcal{D})$ et $(L u)(x)=0 \quad \forall x \in \mathcal{D}$.
Multiply by a test function $\varphi \in C_{c}^{\infty}(\mathcal{D})$ and integrate over \mathcal{D}

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=0 \tag{15}
\end{equation*}
$$

Distributional formulations of PDEs

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and consider the PDE

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} u=0 .
$$

Strong solution : $u \in C^{m}(\mathcal{D})$ et $(L u)(x)=0 \quad \forall x \in \mathcal{D}$.
Multiply by a test function $\varphi \in C_{c}^{\infty}(\mathcal{D})$ and integrate over \mathcal{D}

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=0 \tag{15}
\end{equation*}
$$

Formal adjoint : $L^{*} v=\sum_{|\alpha| \leq n}(-1)^{|\alpha|} \partial^{\alpha}\left(a_{\alpha} v\right)$. Successive integrations by parts yield distributional solutions :

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0 \tag{16}
\end{equation*}
$$

Distributional formulations of PDEs

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and consider the PDE

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} u=0 .
$$

Strong solution : $u \in C^{m}(\mathcal{D})$ et $(L u)(x)=0 \quad \forall x \in \mathcal{D}$.
Multiply by a test function $\varphi \in C_{c}^{\infty}(\mathcal{D})$ and integrate over \mathcal{D}

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} L u(x) \varphi(x) d x=0 \tag{15}
\end{equation*}
$$

Formal adjoint : $L^{*} v=\sum_{|\alpha| \leq n}(-1)^{|\alpha|} \partial^{\alpha}\left(a_{\alpha} v\right)$. Successive integrations by parts yield distributional solutions :

$$
\begin{equation*}
\forall \varphi \in C_{c}^{\infty}(\mathcal{D}), \int_{\mathcal{D}} u(x) L^{*} \varphi(x) d x=0 \tag{16}
\end{equation*}
$$

Only requires that $u \in L_{\text {loc }}^{1}(\mathcal{D})$, i.e. $\int_{K}|u|<+\infty$ for all $K \subset \mathcal{D}$ compact.

PDE constrained (Gaussian) random fields

Proposition 3 (H. et al. [2023, to appear])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and $L:=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$ with $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U=(U(z))_{z \in \mathcal{D}}$ be a centered measurable second order random field with covariance function $k\left(z, z^{\prime}\right)$. Assume that $\sigma: z \longmapsto k(z, z)^{1 / 2} \in L_{\text {loc }}^{1}(\mathcal{D})$.

PDE constrained (Gaussian) random fields

Proposition 3 (H. et al. [2023, to appear])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and $L:=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$ with $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U=(U(z))_{z \in \mathcal{D}}$ be a centered measurable second order random field with covariance function $k\left(z, z^{\prime}\right)$. Assume that $\sigma: z \longmapsto k(z, z)^{1 / 2} \in L_{\text {loc }}^{1}(\mathcal{D})$. 1) Then $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in L_{\text {loc }}^{1}(\mathcal{D})\right\}\right)=1$ and $L_{\text {loc }}^{1}(\mathcal{D})$ et $k(z, \cdot) \in L_{\text {loc }}^{1}(\mathcal{D})$ for all $z \in \mathcal{D}$.
2) There is an equivalence between:

- $\mathbb{P}\left(\left\{\omega \in \Omega: L\left(U_{\omega}\right)=0\right.\right.$ in the sense of distributions $\left.\}\right)=1$
- $\forall z \in \mathcal{D}, L(k(z, \cdot))=0$ in the sense of distributions.

PDE constrained (Gaussian) random fields

Proposition 3 (H. et al. [2023, to appear])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and $L:=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$ with $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U=(U(z))_{z \in \mathcal{D}}$ be a centered measurable second order random field with covariance function $k\left(z, z^{\prime}\right)$. Assume that $\sigma: z \longmapsto k(z, z)^{1 / 2} \in L_{\text {loc }}^{1}(\mathcal{D})$. 1) Then $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in L_{\text {loc }}^{1}(\mathcal{D})\right\}\right)=1$ and $L_{\text {loc }}^{1}(\mathcal{D})$ et $k(z, \cdot) \in L_{\text {loc }}^{1}(\mathcal{D})$ for all $z \in \mathcal{D}$.
2) There is an equivalence between:

- $\mathbb{P}\left(\left\{\omega \in \Omega: L\left(U_{\omega}\right)=0\right.\right.$ in the sense of distributions $\left.\}\right)=1$
- $\forall z \in \mathcal{D}, L(k(z, \cdot))=0$ in the sense of distributions.

Generalises a result from Ginsbourger et al. [2016] to PDE constraints. Also inherited to conditioned GPs.

PDE constrained (Gaussian) random fields

Proposition 3 (H. et al. [2023, to appear])

Let $\mathcal{D} \subset \mathbb{R}^{d}$ be an open set and $L:=\sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$ with $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U=(U(z))_{z \in \mathcal{D}}$ be a centered measurable second order random field with covariance function $k\left(z, z^{\prime}\right)$. Assume that $\sigma: z \longmapsto k(z, z)^{1 / 2} \in L_{\text {loc }}^{1}(\mathcal{D})$. 1) Then $\mathbb{P}\left(\left\{\omega \in \Omega: U(\omega) \in L_{\text {loc }}^{1}(\mathcal{D})\right\}\right)=1$ and $L_{\text {loc }}^{1}(\mathcal{D})$ et $k(z, \cdot) \in L_{\text {loc }}^{1}(\mathcal{D})$ for all $z \in \mathcal{D}$.
2) There is an equivalence between:

- $\mathbb{P}\left(\left\{\omega \in \Omega: L\left(U_{\omega}\right)=0\right.\right.$ in the sense of distributions $\left.\}\right)=1$
- $\forall z \in \mathcal{D}, L(k(z, \cdot))=0$ in the sense of distributions.

Generalises a result from Ginsbourger et al. [2016] to PDE constraints. Also inherited to conditioned GPs. Example for $L=\partial_{t}+c \partial_{x}$:

$$
\begin{equation*}
k\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right):=k_{0}\left(x-c t, x^{\prime}-c t^{\prime}\right) \tag{17}
\end{equation*}
$$

Examples of kernels verifying $L(k(z, \cdot))=0 \quad \forall z$

Given L, find k_{L} such that $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$.

Examples of kernels verifying $L(k(z, \cdot))=0 \quad \forall z$

Given L, find k_{L} such that $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012], Owhadi [2023b]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- (non)stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- 3D wave and transport equation: H. et al. [2023, to appear]
- See also "latent forces" : Álvarez et al. [2009], López-Lopera et al. [2021]

Examples of kernels verifying $L(k(z, \cdot))=0 \quad \forall z$

Given L, find k_{L} such that $L\left(k_{L}(\cdot, z)\right)=0 \forall z ; \Delta=\sum_{i=1}^{d} \partial_{x_{i} x_{i}}^{2}$.

- Laplace : $\Delta u=0$ Mendes and da Costa Júnior [2012], Ginsbourger et al. [2016]
- Heat : $\partial_{t}-D \Delta u=0$ Albert and Rath [2020]
- Div/Curl : $\nabla \cdot u=0, \nabla \times u=0$ Scheuerer and Schlather [2012], Owhadi [2023b]
- Continuum mechanics : Jidling et al. [2018]
- Helmholtz : $-\Delta u=\lambda u$ Albert and Rath [2020]
- (non)stationary Maxwell : Wahlstrom et al. [2013], Jidling et al. [2017],Lange-Hegermann [2018]
- 3D wave and transport equation: H. et al. [2023, to appear]
- See also "latent forces" : Álvarez et al. [2009], López-Lopera et al. [2021]
Always based on representations of solutions of $L u=0$ of the form

$$
u=G f
$$

Outline of the presentation

(1) The problem

- Regression under physical constraints
- Gaussian process (regression)
(2) Imposing physical constraints on Gaussian processes
- The problem with PDEs...
- Sobolev regularity of Gaussian processes
- Linear PDE constraints on Gaussian processes
(3) GPR for the wave equation
- Wave equation tailored covariance functions
- Solving inverse problems
- Numerical application
(4) Conclusion and perspectives

GPR and the wave equation H. et al. [2023]

Homogeneous 3D wave equation : $\Delta:=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{18}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x)\end{cases}
$$

GPR and the wave equation H. et al. [2023]

Homogeneous 3D wave equation : $\Delta:=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+} \tag{18}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x) .\end{cases}
$$

The solution u is represented by (Krichhoff)

$$
\begin{align*}
u(x, t) & =\int_{S} t v_{0}(x-c|t| \gamma)+u_{0}(x-c|t| \gamma)-c|t| \gamma \cdot \nabla u_{0}(x-c|t| \gamma) \frac{d \Omega}{4 \pi} \\
& =\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x) \tag{19}
\end{align*}
$$

where $F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ and $\dot{F}_{t}=\partial_{t} F_{t}$.

GPR and the wave equation H. et al. [2023]

Homogeneous 3D wave equation : $\Delta:=\partial_{x x}^{2}+\partial_{y y}^{2}+\partial_{z z}^{2}$

$$
\begin{cases}L u & =\frac{1}{c^{2}} \partial_{t t}^{2} u-\Delta u=\square u=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}^{+}, \tag{18}\\ u(x, 0) & =u_{0}(x), \quad \partial_{t} u(x, 0)=v_{0}(x) .\end{cases}
$$

The solution u is represented by (Krichhoff)

$$
\begin{align*}
u(x, t) & =\int_{S} t v_{0}(x-c|t| \gamma)+u_{0}(x-c|t| \gamma)-c|t| \gamma \cdot \nabla u_{0}(x-c|t| \gamma) \frac{d \Omega}{4 \pi} \\
& =\left(F_{t} * v_{0}\right)(x)+\left(\dot{F}_{t} * u_{0}\right)(x) \tag{19}
\end{align*}
$$

where $F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ and $\dot{F}_{t}=\partial_{t} F_{t}$. Assume that u_{0} and v_{0} are unknown $\rightarrow u_{0} \sim P G\left(0, k_{u}\right)$ and $v_{0} \sim P G\left(0, k_{v}\right)$, independent. u given by (19) is a GP with covariance function

$$
\begin{equation*}
k\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}\right]\left(x, x^{\prime}\right)+\left[\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}\right]\left(x, x^{\prime}\right) \tag{20}
\end{equation*}
$$

The kernel k verifies $\square k((x, t), \cdot)=0$ for all $(x, t) \in \mathbb{R}^{3} \times \mathbb{R}_{+}$(distribs!).

Estimation of physical parameters and initial conditions

- Reconstruction of initial conditions : the Kriging mean verifies $\square \tilde{m}=0$. Thus

$$
\tilde{m}(\cdot, t=0) \simeq u_{0}, \quad \partial_{t} \tilde{m}(\cdot, t=0) \simeq v_{0}
$$

Estimation of physical parameters and initial conditions

- Reconstruction of initial conditions : the Kriging mean verifies $\square \tilde{m}=0$. Thus

$$
\tilde{m}(\cdot, t=0) \simeq u_{0}, \quad \partial_{t} \tilde{m}(\cdot, t=0) \simeq v_{0}
$$

- The kernel k is parametrized by c, θ_{u} and $\theta_{v} ; \theta_{u}$ and θ_{v} may contain physical information w.r.t. u_{0} and v_{0}.
Example : initial conditions with compact support yield

$$
\begin{equation*}
k_{u}\left(x, x^{\prime}\right)=k_{u}^{0}\left(x, x^{\prime}\right) \mathbb{1}_{B_{R}\left(x_{0}, R\right)}(x) \mathbb{1}_{B\left(x_{0}, R\right)}\left(x^{\prime}\right) \tag{21}
\end{equation*}
$$

Thus, $\left(x_{0}, R\right) \in \theta_{u}$. Likewise for v_{0} (We can also encode symmetries). \rightarrow can be estimated with the marginal likelihood.

Numerical application

Restrictive framework

Expensive convolutions (4D) \rightarrow assume radial symmetry (explicit convolutions)

- Solve numerically the wave equation with $v_{0}=0$ and

$$
u_{0}(x)=A \mathbb{1}_{\left[R_{1}, R_{2}\right]}\left(\left|x-x_{0}^{*}\right|\right)\left(1+\cos \left(\frac{2 \pi\left(\left|x-x_{0}^{*}\right|-\frac{R_{1}+R_{2}}{2}\right)}{R_{2}-R_{1}}\right)\right)
$$

- Generate a database : finite difference scheme in $[0,1]^{3}$ with scattered sensors (LHS).
$B=\left\{u\left(x_{i}, t_{j}\right)+\epsilon_{i j}, 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}, N_{C}=30, N_{T}=75$.

Numerical application

Restrictive framework

Expensive convolutions (4D) \rightarrow assume radial symmetry (explicit convolutions)

- Solve numerically the wave equation with $v_{0}=0$ and

$$
u_{0}(x)=A \mathbb{1}_{\left[R_{1}, R_{2}\right]}\left(\left|x-x_{0}^{*}\right|\right)\left(1+\cos \left(\frac{2 \pi\left(\left|x-x_{0}^{*}\right|-\frac{R_{1}+R_{2}}{2}\right)}{R_{2}-R_{1}}\right)\right)
$$

- Generate a database : finite difference scheme in $[0,1]^{3}$ with scattered sensors (LHS).

$$
B=\left\{u\left(x_{i}, t_{j}\right)+\epsilon_{i j}, 1 \leq i \leq N_{C}, 1 \leq j \leq N_{T}\right\}, N_{C}=30, N_{T}=75
$$

- Kriging with

$$
k_{u}\left(x, x^{\prime}\right)=k_{5 / 2}\left(x-x^{\prime}\right) \times \mathbb{1}_{B_{R}\left(x_{0}, R\right)}(x) \mathbb{1}_{B\left(x_{0}, R\right)}\left(x^{\prime}\right)
$$

Data visualisation

Figure 6 - Examples of captured signals. red : noiseless signals. Blue : noisy signals.

Estimation of physical parameters

$N_{\text {sensors }}$	3	5	10	15	20	25	30	Target
$\left\|\hat{x}_{0}-x_{0}^{*}\right\|$	0.204	0.003	0.004	0.008	0.003	0.004	0.015	0
\hat{R}	0.386	0.432	0.462	0.431	0.414	0.471	0.452	0.25
$\left\|\hat{c}-c^{*}\right\|$	0.084	0.004	0.005	0.005	0.006	0.001	0.004	0
$\hat{\sigma}_{\text {noise }}^{2}$	0.917	0.879	0.93	0.99	0.361	0.988	0.377	0.2025
$\hat{\ell}$	0.02	0.02	0.025	0.02	0.035	0.024	0.032	~ 0.05
$\hat{\sigma}^{2}$	2.367	3.513	4.903	3.168	4.446	4.619	4.79	Unknown
$e_{1, \text {,rel }}^{u}$	1.275	0.157	0.128	0.168	0.11	0.103	0.248	0
$e_{2, \text { rel }}^{u}$	1.056	0.095	0.082	0.124	0.088	0.064	0.213	0
$e_{\infty, \text { rel }}^{u}$	1.037	0.132	0.128	0.198	0.136	0.101	0.321	0

Table 1 - Estimation of hyperparameters and relative errors

Reconstruction of initial condition

Figure 7 - True u_{0} (left column) vs GPR u_{0} (right column). 15 sensors were used. The images correspond to 3 D slices at $z=0.5$.

Outline of the presentation

(1) The problem

- Regression under physical constraints
- Gaussian process (regression)
(2) Imposing physical constraints on Gaussian processes
- The problem with PDEs...
- Sobolev regularity of Gaussian processes
- Linear PDE constraints on Gaussian processes
(3) GPR for the wave equation
- Wave equation tailored covariance functions
- Solving inverse problems
- Numerical application
(4) Conclusion and perspectives

Extension to non linear PDEs

- Non linear constraints on $k(z, \cdot)$: not realistic (+GP interpretation not valid).
- Alternative : in Chen et al. [2021], the nonlinear PDE constraint in applied pointwise on \tilde{m} : modification of the RKHS optimization problem as

$$
\inf _{v \in \mathcal{H}_{k}}\|v\|_{\mathcal{H}_{k}} \quad \text { s.c. } \quad \mathcal{N}\left(v\left(z_{i}\right), \nabla v\left(z_{i}\right), \ldots\right)=\ell_{i} \quad \forall i \in\{1, \ldots, n\}
$$

Generalizes an approach desribed in Wendland [2004].

- Coupling of this approach with strict linear constraints: Owhadi [2023b] (div/curl/periodicity).

Conclusion and perspectives

Overall conclusions :

- GPR : at the intersection of machine learning, statistical and Bayesian approaches and functional analysis.

Conclusion and perspectives

Overall conclusions :

- GPR : at the intersection of machine learning, statistical and Bayesian approaches and functional analysis.

Some research perspectives :

- Insert the Sobolev regularity results in the analysis of GPR for PDEs, e.g. of Chen et al. [2021].
- Current research: draw links between numerical methods for PDEs (finite differences) and some GPR regimes.

Thank you for your attention!

Contact : henderso@insa-toulouse.fr,iain.pl.henderson@gmail.com

References I

C. G. Albert and K. Rath. Gaussian process regression for data fulfilling linear differential equations with localized sources. Entropy, 22(2), 2020. ISSN 1099-4300. URL https://www.mdpi.com/1099-4300/22/2/152.
Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 447 :110668, 2021. ISSN 0021-9991. doi : https://doi.org/10.1016/j.jcp.2021.110668. URL https://www. sciencedirect.com/science/article/pii/S0021999121005635.
D. Ginsbourger, O. Roustant, and N. Durrande. On degeneracy and invariances of random fields paths with applications in Gaussian process modelling. Journal of Statistical Planning and Inference, page 170 :117128, 2016.
lain H. Sobolev regularity of Gaussian random fields. working paper or preprint, October 2022. URL https://hal.science/hal-03769576.

References II

Iain H., Pascal Noble, and Olivier Roustant. Wave equation-tailored
Gaussian process regression with applications to related inverse problems. working paper or preprint, January 2023. URL https://hal.science/hal-03941939.
Iain H., Pascal Noble, and Olivier Roustant. Characterization of the second order random fields subject to linear distributional PDE constraints.
Bernoulli, 2023, to appear. URL
https://hal.science/hal-03770715.
C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. Linearly constrained Gaussian processes. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/ 71ad16ad2c4d81f348082ff6c4b20768-Paper.pdf.

References III

C. Jidling, J. Hendriks, N. Wahlstrom, A. Gregg, T. Schon, C. Wensrich, and A. Wills. Probabilistic modelling and reconstruction of strain. Nuclear Instruments \& Methods in Physics Research Section B-beam Interactions With Materials and Atoms, 436 :141-155, 2018.
M. Lange-Hegermann. Algorithmic linearly constrained Gaussian processes. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/ 68b1fbe7f16e4ae3024973f12f3cb313-Paper.pdf.
A. F. López-Lopera, N. Durrande, and M. Álvarez. Physically-inspired Gaussian process models for post-transcriptional regulation in drosophila. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 :656-666, 2021.

References IV

M. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In D. van Dyk and M. Welling, editors, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages 9-16, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16-18 Apr 2009. PMLR. URL https://proceedings.mlr.press/v5/alvarez09a.html.
Fábio Macêdo Mendes and Edson Alves da Costa Júnior. Bayesian inference in the numerical solution of Laplace's equation. AIP Conference Proceedings, 1443(1) :72-79, 2012. doi : 10.1063/1.3703622. URL https://aip.scitation.org/doi/abs/10.1063/1.3703622.

References V

Houman Owhadi. Do ideas have shape? idea registration as the continuous limit of artificial neural networks. Physica D: Nonlinear Phenomena, 444 :133592, 2023a. ISSN 0167-2789. doi : https://doi.org/10.1016/j.physd.2022.133592. URL https://www. sciencedirect.com/science/article/pii/S0167278922002962.
Houman Owhadi. Gaussian process hydrodynamics, 2023b.
C. E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. the MIT Press, 2006. ISBN 026218253X. URL www. \{G\}aussianProcess.org/gpml.
M. Scheuerer and M. Schlather. Covariance models for divergence-free and curl-free random vector fields. Stochastic Models, 28 :433-451, 2012.

References VI

Michael Scheuerer. Regularity of the sample paths of a general second order random field. Stochastic Processes and their Applications, 120 (10) :1879-1897, 2010. ISSN 0304-4149. doi :
https://doi.org/10.1016/j.spa.2010.05.009. URL https://www. sciencedirect.com/science/article/pii/S0304414910001328.
Ingo Steinwart. Convergence types and rates in generic Karhunen-Loeve expansions with applications to sample path properties. Potential Anal., 51(3) :361-395, 2019.
N. Wahlstrom, M. Kok, T. B. Schön, and F. Gustafsson. Modeling magnetic fields using Gaussian processes. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3522-3526, 2013.

Holger Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.

Comparison with previous results

- Steinwart [2019] If $H_{k} \simeq H^{t}$ then $\mathbb{P}\left(U \in H^{s}\right)=1$ if $t-s>d / 2$. When $s \in \mathbb{N}$, reduces to our result as the imbedding $H^{t} \rightarrow H^{s}$ is Hilbert-Schmidt if $t-s>d / 2$ (Maurey's theorem).
- Scheuerer [2010] : if for all $|\alpha| \leq m$ and $x \in \mathcal{D}, \partial^{\alpha, \alpha} k(x$,$) exists and$ $x \mapsto \partial^{\alpha, \alpha} k(x, x)$ is continuous and

$$
\begin{equation*}
\int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, x) d x<+\infty \tag{22}
\end{equation*}
$$

then $\mathbb{P}\left(U \in H^{m}\right)=1$. We removed the continuity assumptions and added the Gaussianity assumption. We obtain a NSC.

Reproducing kernel Hilbert spaces

Let $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ a psotive semi-definite function. We define H_{k} as

$$
H_{k}:=\left\{\sum_{i=1}^{+\infty} a_{i} k\left(z_{i}, \cdot\right) \text { where }\left(a_{i}\right) \subset \mathbb{R},\left(z_{i}\right) \subset \mathcal{D} \text { and } \sum_{i, j=1}^{+\infty} a_{i} a_{j} k\left(z_{i}, z_{j}\right)<+\infty\right\}
$$

endowed with the inner product

$$
\left\langle\sum_{i=1}^{+\infty} a_{i} k\left(x_{i}, \cdot\right), \sum_{j=1}^{+\infty} b_{j} k\left(y_{j}, \cdot\right)\right\rangle:=\sum_{i, j=1}^{+\infty} a_{i} b_{j} k\left(x_{i}, y_{j}\right)
$$

Reproducing kernel Hilbert spaces

Let $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ a psotive semi-definite function. We define H_{k} as
$H_{k}:=\left\{\sum_{i=1}^{+\infty} a_{i} k\left(z_{i}, \cdot\right)\right.$ where $\left(a_{i}\right) \subset \mathbb{R},\left(z_{i}\right) \subset \mathcal{D}$ and $\left.\sum_{i, j=1}^{+\infty} a_{i} a_{j} k\left(z_{i}, z_{j}\right)<+\infty\right\}$
endowed with the inner product

$$
\left\langle\sum_{i=1}^{+\infty} a_{i} k\left(x_{i}, \cdot\right), \sum_{j=1}^{+\infty} b_{j} k\left(y_{j}, \cdot\right)\right\rangle:=\sum_{i, j=1}^{+\infty} a_{i} b_{j} k\left(x_{i}, y_{j}\right)
$$

The function k verifies the reproducing properties

$$
\left\langle k(z, \cdot), k\left(z^{\prime}, \cdot\right)\right\rangle=k\left(z, z^{\prime}\right) \text { and }\langle k(z, \cdot), f\rangle=f(z) \forall f \in H_{k}
$$

Reproducing kernel Hilbert spaces

Let $k: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ a psotive semi-definite function. We define H_{k} as
$H_{k}:=\left\{\sum_{i=1}^{+\infty} a_{i} k\left(z_{i}, \cdot\right)\right.$ where $\left(a_{i}\right) \subset \mathbb{R},\left(z_{i}\right) \subset \mathcal{D}$ and $\left.\sum_{i, j=1}^{+\infty} a_{i} a_{j} k\left(z_{i}, z_{j}\right)<+\infty\right\}$
endowed with the inner product

$$
\left\langle\sum_{i=1}^{+\infty} a_{i} k\left(x_{i}, \cdot\right), \sum_{j=1}^{+\infty} b_{j} k\left(y_{j}, \cdot\right)\right\rangle:=\sum_{i, j=1}^{+\infty} a_{i} b_{j} k\left(x_{i}, y_{j}\right)
$$

The function k verifies the reproducing properties

$$
\left\langle k(z, \cdot), k\left(z^{\prime}, \cdot\right)\right\rangle=k\left(z, z^{\prime}\right) \text { and }\langle k(z, \cdot), f\rangle=f(z) \forall f \in H_{k}
$$

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.
\longrightarrow Convolution between functions and measures:

$$
(f * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) f(y) d y \quad(\mu * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) \mu(d y)
$$

Details on F_{t} and \dot{F}_{t}

$\longrightarrow F_{t}=\sigma_{c t} / 4 \pi c^{2} t$ means that

$$
\int_{\mathbb{R}^{3}} f(x) F_{t}(d x)=\frac{t}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(c t \gamma) \sin \theta d \theta d \varphi=\frac{t}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega
$$

where γ is the unit length vector $\gamma=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^{T}$.
\longrightarrow Convolution between functions and measures:

$$
(f * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) f(y) d y \quad(\mu * g)(x)=\int_{\mathbb{R}^{3}} g(x-y) \mu(d y)
$$

$\longrightarrow \dot{F}_{t}=\partial_{t} F_{t}$ means that

$$
\begin{aligned}
\left\langle\dot{F}_{t}, f\right\rangle & =\partial_{t} \int f(x) d F_{t}(x) \\
& =\frac{1}{4 \pi} \int_{S(0,1)} f(c t \gamma) d \Omega+\frac{c}{4 \pi} \int_{S(0,1)} \nabla f(c t \gamma) \cdot \gamma d \Omega
\end{aligned}
$$

Radial symmetry formulas

$\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}\right]\left(x, x^{\prime}\right)$

$$
=\frac{\operatorname{sgn}\left(t t^{\prime}\right)}{16 c^{2} r r^{\prime}} \sum_{\varepsilon, \varepsilon^{\prime} \in\{-1,1\}} \varepsilon \varepsilon^{\prime} K_{\mathrm{v}}\left((r+\varepsilon c t)^{2},\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)^{2}\right)
$$

$\left[\left(\dot{F}_{t} \otimes \dot{F}_{t^{\prime}}\right) * k_{u}\right]\left(x, x^{\prime}\right)$

$$
=\frac{1}{4 r r^{\prime}} \sum_{\varepsilon, \varepsilon^{\prime} \in\{-1,1\}}(r+\varepsilon c t)\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right) k_{u}\left((r+\varepsilon c t)^{2},\left(r^{\prime}+\varepsilon^{\prime} c\left|t^{\prime}\right|\right)^{2}\right)
$$

A word on GPR and neural networks

- Certain Gaussian processes as limits of one layer neural netwokrs with infinitely many neurons (Rasmussen and Williams [2006], Section 4.2.3).
- Regression with neural networks as GPR with a kernel learnt from data (Owhadi [2023a] ; Mallat, collège de France).
- GPR : "only" current contender (physics informed) neural networks, cf Chen et al. [2021] for a discussion.

Point source localization

Assume that $u_{0} \equiv 0$ and that v_{0} is almost a point source at x_{0}^{*} : we use the kernels

$$
\begin{align*}
& k_{v}^{R}\left(x, x^{\prime}\right)=k_{v}\left(x, x^{\prime}\right) \frac{\mathbb{1}_{B\left(x_{0}, R\right)}(x)}{4 \pi R^{3} / 3} \frac{\mathbb{1}_{B\left(x_{0}, R\right)}\left(x^{\prime}\right)}{4 \pi R^{3} / 3} \tag{23}\\
& \quad k\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\left[\left(F_{t} \otimes F_{t^{\prime}}\right) * k_{v}^{R}\right]\left(x, x^{\prime}\right) \tag{24}
\end{align*}
$$

with $R \ll 1$. Hyperparameters of $k:\left(\theta_{v}, x_{0}, R, c\right)$ We fix θ_{v}, R and c to the "right values" : $\mathcal{L}(\theta)=\mathcal{L}\left(x_{0}\right)$.

Question : behaviour of $x_{0} \mapsto \mathcal{L}\left(x_{0}\right)$?

Minimize negative marginal likelihood \equiv GPS localization

