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Motivation

>

>

Functional data analysis (FDA) is a growing field and has found numerous
applications, for instance in finance, biomedicine or weather forecasting.
Among the most common statistical tasks performed by practitioners using
functional data is goodness-of-fit testing.

However, dealing with infinite-dimensional data poses many challenges - for
instance it prohibits the use of density-based methods.

This issue is often side-stepped through the project first approach to FDA.
But choosing the right projection is challenging - it might not capture the
variability of the random functions and might not yield close form expressions.
A convenient way of fully characterizing probability distributions (including
examples of infinite-dimensional distributions) is offered by Stein’s method.
Stein's method has been used in the past to construct goodness-of-fit tests via
kernel Stein discrepancies (KSD) but only in finite dimensions.

Our work:

» Formulates KSD for measures on general separable Hilbert spaces.
> |dentifies conditions which ensure that such KSD separates measures.
» Formulates a KSD goodness-of-fit test for measures absolutely continuous
wrt Gaussians, directly on separable Hilbert spaces, without projections.
Along the way we derive a new Fourier representation which gives insight on the
behaviour of KSD in finite and infinite dimensions.
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Formulation of the problem



Formulation of the problem

> X is a separable Hilbert space, e.g. R? or L2([0,1]9)

» Observed samples {X,}N_; ~ Q for a prob. measure Q on X.
» How far is @ from P such that j—,\’fc x e~ Y for N¢ denoting a
Gaussian measure with mean zero and covariance operator C?

Example (Conditioned SDE)

> X = L2([0,50]) 5

6
> dX; = 0.7sin(X;)dt + dW, . X
» Condition on Xg = —7, Xs0 = 3. 0

» N¢ - Brownian bridge, U - from
Girsanov theorem

Example from Bierkens et al, Stat. Comput., 2021
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Stein’'s method and Stein
discrepancies



Stein's method - original motivation

Original aim: find a bound on an integral probability metric
suppey |EQh — Eph|, where P is the target (known) distribution,
Q is the approximating law and H is a suitable class of real-valued
functions.

» Step 1: Find an operator A acting on a class of real-valued
functions, such that:

Vf € Domain(A) EpAf =0.
» Step 2: For a given function h € H, find f = fp, such that:

Af = h—Eph.

» Step 3: Study the properties of f, and bound supjcy, |[EQAfh|,
using various mathematical techniques (exchangeable pairs,
Taylor expansions, Malliavin calculus...).
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Stein discrepancies

» For a suitable class of test functions F, let
SDA7(Q,P) := sup [Eq [Af]|.
fer

» A convenient choice for F is the unit ball of a RKHS:
F ={f € Hy: ||f|lk <1}, giving rise to the Kernel Stein
Discrepancy:

KSDAJ((Q, P) = sup |EQ [.Af” .
[Ifllx<1

> KSD on R? has a convenient representation that allows it to
be easily estimated with a U-statistic, given samples from Q:

KSD4x(Q, P)? =E(x x)~ax @ [(A® A) k(X, X')]
=Exx)~ax@ [hak(X; X)],

where hy i is called the Stein kernel.
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How to find a Stein operator?

Remember: We want to find an operator A acting on a class of
real-valued functions, such that:
Vf € Domain(A) EpAf =0.
One way of doing this is to:
» construct a Markov process (X;) whose stationary distribution is P;

> take A to be its infinitesimal generator:

i EIFOG)Xo = x] = (x)

Af(x) = im .

Example (Langevin Stein operator on R9)
Suppose that P is a density over R9.
» Markov process: dX; = V log P(X;)dt + v/2dW,.
» Infinitesimal generator:
Af(x) = Af(x) + (Vlog P(x), VF(x))ga -
Note that V log P kills the normalising constant of P.
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Stein discrepancy in infinite dimensions

» Suppose we work on a separable Hilbert space X
> Our target measure P is such that g1~ oc eV,
» Consider the pre-conditioned Langevin diffusion on X
dX; = —(X¢ + CDU(X:))dt + v2dW,,
Take its infinitesimal generator:
Af(x) = Tr(CD*f(x)) — (Df(x),x + CDU(x)) »

as our Stein operator.

Some questions about the resulting KSD:
> When is KSD4k(Q, P) := supyr, <1 |Eq [Af]| well defined?
» When does it separate measures?

» When does it metrize weak convergence?
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Our results about
(infinite-dimensional) KSD



Our assumptions

> X is a separable Hilbert space.

» The target P is such that ﬁ x e Y,

» The Stein operator is the pre-conditioned Langevin generator:
Af(x) = Tr(CD?f(x)) — (Df(x), x + CDU(x)) -
> The kernel k : X x X — R has bounded and continuous
second derivatives: k € Cl(,2’2) (X x X).
» Additional mild integrability and differentiability conditions on
the potential U hold:
> Ex~q[l[CDU(X)]|x] < oo;
» e*U(')/2 c WCI:72(X)
(i.e. Ex~ne )|e7U(X>/2(X)|‘i < oo and Ex~ . ||C1/2D (efu(')/z) (X)HZX < oo ),

> Exn [[[CY2DU(X)|3] < oo.

» Second moments of candidate @ exist.
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Our results

Given the assumptions from the previous slide we show the following:
» The kernel Stein discrepancy KSD 4 x(Q, P) is well-defined.

» The double expectation representation of KSD is well-defined in the
desired generality of (potentially) infinite-dimensional X’:

KSD.k(Q, P)* = Ex . x)~qxq [(A® A) k(X, X")].

» Let i be a Borel measure on X' and [i be its Fourier transform. If
k(x,y) = fi(x — y) then the following Fourier representation holds:

KSD(Q, P = /X [Ex-q [A(ex) (x)] ]z duls).

» Suppose that k(x,y) = fi(x — y) for a Borel measure y with full
support. Then the KSD separates measures:

KSD(Q,P)ax =0« Q= P.
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A closer look at the Fourier representation

If k(x,y) = fi(x — y) then: .
KSD4x(Q,P):= sup [Eq[Af]| = ‘/X )EM [A (e"“-h‘) (X)}

k<1

2

_dpu(s).

» Applies to more general Stein operators

» Related to the following expression for MMD:
2 . 2
- A(s) — P - i(s,)
MMD,(Q, P) = /X |@(5) = P(5)| duts) = /X [Exna [0 (%) ()] | duts)
for ©f(x) = f(x) — Epf.
> Relates KSD to L2 - based tests (Ebner, Henze 2020).
» Supremum over RKHS = Average over p.

» The kernel choice only influences the integrating measure . The
integrand is determined by the Stein operator A.

» The heavier thg tails of i, the more weight is placed upon the test
functions A (e/¢*)x) (-) for values of s with large norm and KSD
becomes more discerning between P and Q.
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Example

» Let X =R, P have density p(x) o exp (— (%4)3)

» Let A be the standard Langevin-Stein operator:
Af(x) = f"(x) + (log p)'(x)f'(x).

20

(a) u = Gaussian(0, 1)

(b) u = Students-r(v = 2)
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(c) p = Cauchy(0, 1)

igure 1: Plots corresponding to Example 4.1 of the real part of the test functions FA(e™")(x) fo
10 samples from different choices of y, the heavier the tails of g the larger the samples of s henc
he greater the magnitude and periodicity of the test functions. In black is (log p)’(x) where p(x)

‘xp(—(%)g).
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Role of the assumptions on the kernel

Remember: For the Fourier representation and separation of measures we
required k(x,y) = i(x — y).
» In finite dimensions, it's necessary and sufficient that k be
translation invariant and continuous (by Bochner's theorem).

» In infinite dimensions additional strong smoothness conditions are
required.

> For instance, k(x,y) = exp (—1||x — y||%) is not a Fourier
transform of any measure.

Example
Consider the Squared Exponential (SE-T) and Inverse Multi Quadric-T
(IMQ-T) kernels:

1 5 5 —1/2
kse—r(x,y) =exp (=5 ITx = Tl ) o kwo-r(xy) = (ITx = Tylx +1) .

Suppose that T is symmetric, positive-definite and trace class. Then the
SE — TY2 and IMQ — T2 are characteristic functions of measures with

full support.
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Additional result on the separation of measures

Theorem
Assume Q has bounded second moments and U satisfies the mild
integrability and differentiability conditions:

> Exq[l|CDU(X)]x] < oo;
> e V02 e Wh(x);
> Exne [ICY2DUX)[3] < oo

Suppose that T € L(X) and T* is surjective. If k is either SE-T
or IMQ-T then

KSD4, k(Q,P) =0+ Q =P,

where A, is a special vectorised version of the pre-conditioned
Langevin operator instroduced before.
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Goodness-of-fit testing



Framework for goodness-of-fit testing

Testing framework developed in Chwiatkowski et al. (2016) and Liu et al.
(2016), adapted to our (potentially) infinite-dimensional setup:

» Given i.i.d. samples {X;}"_; from Q consider the U-statistic:
(ST oL X
KSD(Q, P)* = D) > h(Xi, X)),

1<i#j<n
where h is the Stein kernel.

» Use a bootstrap procedure to generate samples.

» After generating bootstrap samples, reject the null if the test statistic
falls outside a certain percentile of the empirical histogram.

» Computational cost: O(n*BH), where n - number of data points, B -
number of bootstrap repetitions, H - cost of evaluating h.
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Numerical experiments



Experiments

> We will use the:
> SE-y 71T kernel ksg(x,y) = exp <7#|| Tx — Ty||fv);

> IMQ-yIT kernel kimg(x,y) = (72| Tx — Ty|lx +1) 12

» We use the median heuristic for v and choose
v = Med{||TX; — TXjl|x,1 <i# )< n}, where {X;}]_; are
i.i.d. samples from the unknown measure Q.

> We make the following choices for T:
> Ty =y
> Tox =Y 70 mi(x, &) e, where n; = \; ' for 1 < i <50 and
n; = 1 for i > 50 with e;, \; the eigensystem of Brownian
motion.
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Example: Conditioned non-linear SDE

> X = L2([0,50]), dX; = 0.7sin(X;)dt + dW,,
conditioned on Xy = X50 = 0.

» N¢ - Brownian bridge, U - from Girsanov theorem:
50
U(x) = % / 0.49sin(x(s))? + 0.7 cos(x(s))ds.
0
» Simulate samples using the piecewise-deterministic Markov process
sampler from Bierkens et al. (2021).

» Consider deviations from the target by a deterministic drift
Y: = X¢ + 6t/50, for 6 € R. The null hypothesis is given by § = 0.

6§ | SET; SET, IMQT; IMQ-T,

0 0.08 0.05 0.07 0.05
0.05 | 0.17 0.17 0.20 0.18
0.1 0.43 0.4 0.45 0.43
015 | 0.81 0.77 0.79 0.77

0.2 0.97 0.95 0.96 0.96

Table 3. Proportion of times the null was rejected on the non-linear conditioned SDE experiment, § denotes the

parameter controlling the deviation from the null.
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Example: Euler-Maruyama Discretisation Error

» Consider the same conditioned diffusion

» Use KSD to check how sensitive the SDE is to the arising
discretization error arising from the Euler-Maruyama method.

> Use the IMQ-T kernel for T € {Ty, T2}
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Figure 2: A plot of KSD using the IMQ kernel against the number of steps in the Euler-Maruyama

simulation to simulate the target measure. The target measure is the conditioned SDE (25). The KSD
value was estimated using 2000 samples of the Euler-Maruyama simulation, keeping the trajectories

with | X (50)| <0.1.
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Conclusions

» KSD is well-defined for a wide array of kernels and
infinite-dimensional targets.

» Infinite-dimensional KSD separates measures for certain
commonly used kernels.

» Therefore, KSD may be used to test goodness of fit of
functional data.

» The Fourier representation gives insight into the behaviour of
KSD.

» There are many questions remaining!
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