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Motivation
I Functional data analysis (FDA) is a growing field and has found numerous

applications, for instance in finance, biomedicine or weather forecasting.

I Among the most common statistical tasks performed by practitioners using
functional data is goodness-of-fit testing.

I However, dealing with infinite-dimensional data poses many challenges - for
instance it prohibits the use of density-based methods.

I This issue is often side-stepped through the project first approach to FDA.

I But choosing the right projection is challenging - it might not capture the
variability of the random functions and might not yield close form expressions.

I A convenient way of fully characterizing probability distributions (including
examples of infinite-dimensional distributions) is offered by Stein’s method.

I Stein’s method has been used in the past to construct goodness-of-fit tests via
kernel Stein discrepancies (KSD) but only in finite dimensions.

I Our work:
I Formulates KSD for measures on general separable Hilbert spaces.
I Identifies conditions which ensure that such KSD separates measures.
I Formulates a KSD goodness-of-fit test for measures absolutely continuous

wrt Gaussians, directly on separable Hilbert spaces, without projections.

I Along the way we derive a new Fourier representation which gives insight on the
behaviour of KSD in finite and infinite dimensions.
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Overview

Formulation of the problem

Introduction to Stein’s method and KSD

Our results about (infinite-dimensional) KSD

KSD goodness-of-fit testing for functional data

Numerical experiments
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Formulation of the problem



Formulation of the problem

I X is a separable Hilbert space, e.g. Rd or L2([0, 1]d)

I Observed samples {Xn}Nn=1 ∼ Q for a prob. measure Q on X .

I How far is Q from P such that dP
dNC
∝ e−U for NC denoting a

Gaussian measure with mean zero and covariance operator C?

Example (Conditioned SDE)

I X = L2([0, 50])

I dXt = 0.7 sin(Xt)dt + dWt

I Condition on X0 = −π, X50 = 3π.

I NC - Brownian bridge, U - from
Girsanov theorem

Example from Bierkens et al, Stat. Comput., 2021
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Stein’s method and Stein
discrepancies



Stein’s method - original motivation

Original aim: find a bound on an integral probability metric
suph∈H |EQh − EPh|, where P is the target (known) distribution,
Q is the approximating law and H is a suitable class of real-valued
functions.

I Step 1: Find an operator A acting on a class of real-valued
functions, such that:

∀f ∈ Domain(A) EPAf = 0.

I Step 2: For a given function h ∈ H, find f = fh, such that:

Af = h − EPh.

I Step 3: Study the properties of fh and bound suph∈H |EQAfh|,
using various mathematical techniques (exchangeable pairs,
Taylor expansions, Malliavin calculus...).
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Stein discrepancies

I For a suitable class of test functions F , let

SDA,F (Q,P) := sup
f ∈F
|EQ [Af ]| .

I A convenient choice for F is the unit ball of a RKHS:
F = {f ∈ Hk : ‖f ‖k ≤ 1}, giving rise to the Kernel Stein
Discrepancy:

KSDA,k(Q,P) := sup
‖f ‖k≤1

|EQ [Af ]| .

I KSD on Rd has a convenient representation that allows it to
be easily estimated with a U-statistic, given samples from Q:

KSDA,k(Q,P)2 =E(X ,X ′)∼Q×Q
[
(A⊗A) k(X ,X ′)

]
=:E(X ,X ′)∼Q×Q

[
hA,k(X ,X ′)

]
,

where hA,k is called the Stein kernel.
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How to find a Stein operator?

Remember: We want to find an operator A acting on a class of
real-valued functions, such that:

∀f ∈ Domain(A) EPAf = 0.

One way of doing this is to:
I construct a Markov process (Xt) whose stationary distribution is P;

I take A to be its infinitesimal generator:

Af (x) = lim
t↓0

E[f (Xt)|X0 = x ]− f (x)

t
.

Example (Langevin Stein operator on Rd)
Suppose that P is a density over Rd .

I Markov process: dXt = ∇ logP(Xt)dt +
√

2dWt .

I Infinitesimal generator:

Af (x) = ∆f (x) + 〈∇ logP(x),∇f (x)〉Rd .

Note that ∇ logP kills the normalising constant of P.
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Stein discrepancy in infinite dimensions

I Suppose we work on a separable Hilbert space X .

I Our target measure P is such that dP
dNC
∝ e−U .

I Consider the pre-conditioned Langevin diffusion on X :

dXt = −(Xt + CDU(Xt))dt +
√

2dWt ,

Take its infinitesimal generator:

Af (x) = Tr(CD2f (x))− 〈Df (x), x + CDU(x)〉X

as our Stein operator.

Some questions about the resulting KSD:

I When is KSDA,k(Q,P) := sup‖f ‖k≤1 |EQ [Af ]| well defined?

I When does it separate measures?

I When does it metrize weak convergence?
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Our results about
(infinite-dimensional) KSD



Our assumptions

I X is a separable Hilbert space.

I The target P is such that dP
dNC
∝ e−U .

I The Stein operator is the pre-conditioned Langevin generator:
Af (x) = Tr(CD2f (x))− 〈Df (x), x + CDU(x)〉X .

I The kernel k : X × X → R has bounded and continuous
second derivatives: k ∈ C

(2,2)
b (X × X ).

I Additional mild integrability and differentiability conditions on
the potential U hold:
I EX∼Q [‖CDU(X )‖X ] <∞;

I e−U(·)/2 ∈W 1,2
C (X )

(i.e. EX∼NC

∥∥∥e−U(X )/2(X )
∥∥∥2

X
<∞ and EX∼NC

∥∥∥C1/2D
(
e−U(·)/2

)
(X )

∥∥∥2

X
<∞ );

I EX∼NC

[
‖C 1/2DU(X )‖2

X
]
<∞.

I Second moments of candidate Q exist.
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Our results

Given the assumptions from the previous slide we show the following:

I The kernel Stein discrepancy KSDA,k(Q,P) is well-defined.

I The double expectation representation of KSD is well-defined in the
desired generality of (potentially) infinite-dimensional X :

KSDA,k(Q,P)2 = E(X ,X ′)∼Q×Q [(A⊗A) k(X ,X ′)] .

I Let µ be a Borel measure on X and µ̂ be its Fourier transform. If
k(x , y) = µ̂(x − y) then the following Fourier representation holds:

KSD(Q,P)2
A,k =

∫
X

∣∣∣EX∼Q

[
A
(
e i〈s,·〉X

)
(X )
]∣∣∣2

C
dµ(s).

I Suppose that k(x , y) = µ̂(x − y) for a Borel measure µ with full
support. Then the KSD separates measures:

KSD(Q,P)A,k = 0⇐⇒ Q = P.

29 June 2023 Miko laj Kasprzak (mik.kasprzak@gmail.com) 13



A closer look at the Fourier representation

If k(x , y) = µ̂(x − y) then:

KSDA,k(Q,P) := sup
‖f ‖k≤1

|EQ [Af ]| =

∫
X

∣∣∣EX∼Q

[
A
(
e i〈s,·〉X

)
(X )
]∣∣∣2

C
dµ(s).

I Applies to more general Stein operators

I Related to the following expression for MMD:

MMDk (Q,P) =

∫
X

∣∣∣Q̂(s)− P̂(s)
∣∣∣2
C
dµ(s) =

∫
X

∣∣∣EX∼Q

[
Θ
(
e i〈s,·〉X

)
(X )
]∣∣∣2

C
dµ(s)

for Θf (x) = f (x)− EP f .

I Relates KSD to L2 - based tests (Ebner, Henze 2020).

I Supremum over RKHS = Average over µ.

I The kernel choice only influences the integrating measure µ. The
integrand is determined by the Stein operator A.

I The heavier the tails of µ, the more weight is placed upon the test
functions A

(
e i〈s.·〉X

)
(·) for values of s with large norm and KSD

becomes more discerning between P and Q.
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Example

I Let X = R, P have density p(x) ∝ exp
(
−
(
x−3

3

)3
)

.

I Let A be the standard Langevin-Stein operator:
Af (x) = f ′′(x) + (log p)′(x)f ′(x).

29 June 2023 Miko laj Kasprzak (mik.kasprzak@gmail.com) 15



Role of the assumptions on the kernel

Remember: For the Fourier representation and separation of measures we
required k(x , y) = µ̂(x − y).

I In finite dimensions, it’s necessary and sufficient that k be
translation invariant and continuous (by Bochner’s theorem).

I In infinite dimensions additional strong smoothness conditions are
required.

I For instance, k(x , y) = exp
(
− 1

2‖x − y‖2
X
)

is not a Fourier
transform of any measure.

Example
Consider the Squared Exponential (SE-T ) and Inverse Multi Quadric-T
(IMQ-T ) kernels:

kSE−T (x , y) = exp

(
−1

2
‖Tx − Ty‖2

X

)
, kIMQ−T (x , y) =

(
‖Tx − Ty‖2

X + 1
)−1/2

.

Suppose that T is symmetric, positive-definite and trace class. Then the
SE − T 1/2 and IMQ − T 1/2 are characteristic functions of measures with
full support.
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Additional result on the separation of measures

Theorem
Assume Q has bounded second moments and U satisfies the mild
integrability and differentiability conditions:

I EX∼Q [‖CDU(X )‖X ] <∞;

I e−U(·)/2 ∈W 1,2
C (X );

I EX∼NC

[
‖C 1/2DU(X )‖2

X
]
<∞.

Suppose that T ∈ L(X ) and T ∗ is surjective. If k is either SE-T
or IMQ-T then

KSDAv ,k(Q,P) = 0⇐⇒ Q = P,

where Av is a special vectorised version of the pre-conditioned
Langevin operator instroduced before.
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Goodness-of-fit testing



Framework for goodness-of-fit testing

Testing framework developed in Chwia lkowski et al. (2016) and Liu et al.
(2016), adapted to our (potentially) infinite-dimensional setup:

I Given i.i.d. samples {Xi}ni=1 from Q consider the U-statistic:

K̂SD(Q,P)2 =
1

n(n − 1)

∑
1≤i 6=j≤n

h(Xi ,Xj),

where h is the Stein kernel.

I Use a bootstrap procedure to generate samples.

I After generating bootstrap samples, reject the null if the test statistic
falls outside a certain percentile of the empirical histogram.

I Computational cost: O(n2BH), where n - number of data points, B -
number of bootstrap repetitions, H - cost of evaluating h.
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Numerical experiments



Experiments

I We will use the:
I SE-γ−1T kernel kSE(x , y) = exp

(
− 1

2γ2 ‖Tx − Ty‖2
X

)
;

I IMQ-γ−1T kernel kIMQ(x , y) =
(
γ−2‖Tx − Ty‖X + 1

)−1/2
.

I We use the median heuristic for γ and choose
γ = Med{‖TXi − TXj‖X , 1 ≤ i 6= j ≤ n}, where {Xj}nj=1 are
i.i.d. samples from the unknown measure Q.

I We make the following choices for T :
I T1 = IX
I T2x =

∑∞
i=1 ηi 〈x , ei 〉X ei , where ηi = λ−1

i for 1 ≤ i ≤ 50 and
ηi = 1 for i > 50 with ei , λi the eigensystem of Brownian
motion.

29 June 2023 Miko laj Kasprzak (mik.kasprzak@gmail.com) 21



Example: Conditioned non-linear SDE

I X = L2([0, 50]), dXt = 0.7 sin(Xt)dt + dWt ,
conditioned on X0 = X50 = 0.

I NC - Brownian bridge, U - from Girsanov theorem:

U(x) =
1

2

∫ 50

0

0.49 sin(x(s))2 + 0.7 cos(x(s))ds.

I Simulate samples using the piecewise-deterministic Markov process
sampler from Bierkens et al. (2021).

I Consider deviations from the target by a deterministic drift
Yt = Xt + δt/50, for δ ∈ R. The null hypothesis is given by δ = 0.
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Example: Euler-Maruyama Discretisation Error

I Consider the same conditioned diffusion
I Use KSD to check how sensitive the SDE is to the arising

discretization error arising from the Euler-Maruyama method.
I Use the IMQ-T kernel for T ∈ {T1,T2}.
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Conclusions

I KSD is well-defined for a wide array of kernels and
infinite-dimensional targets.

I Infinite-dimensional KSD separates measures for certain
commonly used kernels.

I Therefore, KSD may be used to test goodness of fit of
functional data.

I The Fourier representation gives insight into the behaviour of
KSD.

I There are many questions remaining!
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