Learning from the dual parameterization Approximate inference and learning in Gaussian process models

Ti John

Aalto University and Finnish Center for Artificial Intelligence

LIKE 23 Bern, 28 June 2023

Joint work...

Rui Li

Paul E. Chang

Arno Solin

ti.john@aalto.fi / ♥ @scien_ti_st

Outline

Gaussian process model

Laplace approximation

Variational inference

Hyperparameter learning

Sparse approximation

Sequential learning

prior:
$$p(f(\cdot)) = \mathcal{GP}(\mu(\cdot), \kappa(\cdot, \cdot))$$

likelihood: $p(\mathbf{y} | \mathbf{f}) = \prod_{i=1}^{n} p(y_i | f_i), e.g.$ Bernoulli for classification
posterior: $p(f(\cdot) | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{f}) p(f(\cdot))$ intractable
 $\approx q(f(\cdot))$ approximate inference

Approximate inference for non-conjugate likelihood models

- MCMC (sampling) methods (accurate but generally heavy)
- Laplace approximation (LA) (fast and simple)
- Expectation propagation (EP) (efficient but tricky)
- Variational methods (VB/VI) (popular but not problem-free)

GP classification with a Bernoulli likelihood

Gaussian approximate posterior

$$p(\mathbf{f} \mid \mathbf{y}) pprox q(\mathbf{f})$$

 $q(\mathbf{f}) = \mathrm{N}(\mathbf{f}; \mathbf{m}, \mathsf{S})$

How to find **m** and S?

ti.john@aalto.fi / ♥ @scien_ti_st

Laplace approximation

$$p(\mathbf{f} \mid \mathbf{y}) \approx q(\mathbf{f})$$

$$q(\mathbf{f}) = N(\mathbf{f}; \mathbf{m}, S)$$
How to find \mathbf{m} and S ?
$$(\mathbf{f} \mid \mathbf{y}) = N(\mathbf{f}; \mathbf{m}, S)$$

$$(\mathbf{f} \mid \mathbf{y})$$

$$(\mathbf{f} \mid \mathbf{y})$$

ti.john@aalto.fi / ♥ @scien_ti_st

Laplace approximation, mean parameter **m**

posterior:

 $ho(\mathbf{f} \,|\, \mathbf{y}) \propto
ho(\mathbf{y} \,|\, \mathbf{f}) \,
ho(\mathbf{f})$

Laplace objective:

$$\mathcal{L}_{Lap} = \log p(\mathbf{y} \,|\, \mathbf{f}) + \log p(\mathbf{f})$$

mode of posterior:

$$\mathbf{m} = \mathbf{f}^* = rg\max_{\mathbf{f}} \mathcal{L}_{\mathsf{Lap}}(\mathbf{f})$$

(log-concave likelihoods: convex optimization, unique global maximum)
ti.john@aalto.fi / ♥ @scien_ti_st

We can find a different (dual) parameterization!

Stationary point of $\mathcal{L}_{Lap} = \log p(\mathbf{y} | \mathbf{f}) + \log p(\mathbf{f})$

At the optimum:

 $\log p(\mathbf{f}) = -\frac{1}{2}\mathbf{f}^{\mathsf{T}}\mathsf{K}^{-1}\mathbf{f} + \text{const.}$

$$0 = \nabla_{f} \mathcal{L}_{Lap} \Big|_{f=f^{*}}$$

$$= \underbrace{\nabla_{f} \log p(\mathbf{y} | \mathbf{f})}_{\text{likelihood term}} \Big|_{f=f^{*}} + \underbrace{\nabla_{f} \log p(\mathbf{f})}_{\text{prior term}} \Big|_{f=f^{*}}$$

$$= \underbrace{\nabla_{f} \log p(\mathbf{y} | \mathbf{f})}_{=:\alpha(f^{*})} - K^{-1} \mathbf{f} \Big|_{f=f^{*}}$$

$$= \alpha^{*} - K^{-1} \mathbf{f}^{*} \quad \Leftrightarrow \quad \mathbf{f}^{*} = K \alpha^{*}$$

 \Rightarrow mode can equivalently be parameterized through the derivatives of the likelihood \Rightarrow dual parameterization

ti.john@aalto.fi / 🎔 @scien_ti_st

What about the covariance S?

Laplace approximation: 2nd-order Taylor approximation to log posterior.

precision
$$S^{-1} = -\nabla_f^2 \mathcal{L}_{Lap} |_{f=f^*}$$

Hessian of negative log posterior, $-\mathcal{L}_{Lap} = -\log p(\mathbf{y} | \mathbf{f}) - \log p(\mathbf{f})$:

$$-\nabla_{f}^{2}\mathcal{L}_{Lap}\big|_{f=f^{*}} = \underbrace{-\nabla_{f}^{2}\log p(\mathbf{y} \mid \mathbf{f})\big|_{f=f^{*}}}_{=:W} + \mathsf{K}^{-1}$$

For factorizing likelihood, $p(\mathbf{y} | \mathbf{f}) = \prod_{i=1}^{n} p(y_i | f_i)$: $W = -\nabla_{\mathbf{f}}^2 \log p(\mathbf{y} | \mathbf{f}) \Big|_{\mathbf{f} = \mathbf{f}^*} = \operatorname{diag}(\boldsymbol{\beta}), \qquad \beta_i = -\frac{\partial^2}{\partial f_i^2} \log p(y_i | f_i)$

$$\Rightarrow S_{Lap} = (W + K^{-1})^{-1}$$

ti.john@aalto.fi / 🕑 @scien_ti_st

Laplace approximation is local

Instead of point estimate (and post-hoc uncertainty), we may prefer optimizing over a whole posterior distribution directly \Rightarrow variational inference (VI)

ti.john@aalto.fi / @scien_ti_st

Dual parameterization of VI

From Laplace to VI

Stationary point

$$q^*(\mathbf{f}) = \arg \max_{q} \mathcal{L}_{\mathsf{ELBO}}[q] \qquad \text{for } q(\mathbf{f}) = \mathrm{N}(\mathbf{m}, \mathsf{S})$$

Now two stationary point equations:

 $0 = \nabla_{\mathbf{m}} \mathcal{L}_{\mathsf{ELBO}}$ $0 = \nabla_{\mathsf{S}} \mathcal{L}_{\mathsf{ELBO}}$

ti.john@aalto.fi / 🎔 @scien_ti_st

Equation for mean \boldsymbol{m}

$$\nabla_{\mathsf{m}} \mathcal{L}_{\mathsf{ELBO}}[q(\mathbf{f})] = \nabla_{\mathsf{m}} \mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{y} | \mathbf{f})] - \nabla_{\mathsf{m}} \operatorname{KL}[q(\mathbf{f}) || p(\mathbf{f})]$$
$$\operatorname{KL}[q(\mathbf{f}) || p(\mathbf{f})] = \operatorname{KL}[\operatorname{N}(\mathbf{m}, \mathsf{S}) || \operatorname{N}(\mathbf{0}, \mathsf{K})] = \frac{1}{2} \left(\operatorname{Tr}(\mathsf{K}^{-1}\mathsf{S}) - n + \mathbf{m}^{\mathsf{T}}\mathsf{K}^{-1}\mathbf{m} + \log \frac{\det \mathsf{K}}{\det \mathsf{S}} \right)$$
$$\nabla_{\mathsf{m}} \operatorname{KL}[q(\mathbf{f}) || p(\mathbf{f})] = \mathsf{K}^{-1}\mathbf{m}$$

$$\nabla_{\mathsf{m}} \mathbb{E}_{q(\mathsf{f})}[\log p(\mathbf{y} \mid \mathbf{f})] = \mathbb{E}_{q(\mathsf{f})}[\nabla_{\mathsf{f}} \log p(\mathbf{y} \mid \mathbf{f})] =: \boldsymbol{\alpha}$$
Bonnet's theorem

At optimum:

$$0 = \boldsymbol{\alpha}^* - \mathsf{K}^{-1} \mathbf{m}^* \qquad \Leftrightarrow \qquad \mathbf{m}^* = \mathsf{K} \boldsymbol{\alpha}^*$$

ti.john@aalto.fi / ♥ @scien_ti_st

Equation for covariance S

more complicated...

Reparameterizations

$$q(\mathbf{f}) = N(\mathbf{m}, S)$$

- mean-covariance: $\xi = (\mathbf{m}, S)$ (and whitened reparameterization)
- natural parameters: $\eta = (S^{-1}\mathbf{m}, -\frac{1}{2}S^{-1})$
- expectation parameters: $\mu = (\mathbf{m}, \mathbf{m}\mathbf{m}^{\mathsf{T}} + \mathsf{S})$

Lagrangian dual

$$\mathcal{L}_{\mathsf{ELBO}}[q(\mathbf{f})] = \mathbb{E}_{q(\mathbf{f})} \log p(\mathbf{y} | \mathbf{f}) - \mathrm{KL}[q(\mathbf{f}) \| p(\mathbf{f})]$$

Introducing local $\tilde{\mu}$ and moment-matching constraint:

$$\mathcal{L}_{\text{Lagrange}}(\tilde{\mu}, \mu, \lambda) = \sum_{i=1}^{n} \mathbb{E}_{\tilde{q}_{i}}(f_{i}; \tilde{\mu}_{i}) [\log p(y_{i} \mid f_{i})] - \sum_{i=1}^{n} \langle \lambda_{i}, \tilde{\mu}_{i} - \mu_{i} \rangle - \text{KL} \big[q(\mathbf{f}; \mu) \| p(\mathbf{f}) \big]$$

Stationary point:

 $q^*(\mathbf{f})$ has natural parameters $\eta^*_q = \eta_{
ho} + \lambda^*$

 $\eta_a - \eta_a$

$$\begin{array}{lll} 0 = \nabla_{\lambda} \mathcal{L}_{\text{Lagrange}} & \Rightarrow & \mu^{*} = \tilde{\mu}^{*} \\ 0 = \nabla_{\tilde{\mu}} \mathcal{L}_{\text{Lagrange}} & \Rightarrow & \lambda_{i}^{*} = \nabla_{\mu_{i}} \mathbb{E}_{q^{*}(f_{i})}[\log p(y_{i} \mid f_{i})] \\ 0 = \nabla_{\mu} \mathcal{L}_{\text{Lagrange}} & \Rightarrow & \lambda^{*} = \underbrace{\nabla_{\mu} \operatorname{KL}[q(\mathbf{f}; \mu^{*}) \| p(\mathbf{f})]}_{\lambda^{*}} \end{array}$$

ti.john@aalto.fi / 🕑 @scien_ti_st

Optimal $q^*(\mathbf{f})$

Optimal
$$q^*(\mathbf{f})$$
 has natural parameters $\eta_q^* = \eta_p + \lambda^*$
Prior $p(\mathbf{f})$ has natural parameters $\eta_p = (0, -\frac{1}{2}\mathsf{K}^{-1})$

In mean-covariance parameterization:

$$\mathbf{m}^* = \mathsf{K} \boldsymbol{\alpha}^* \qquad \qquad \boldsymbol{\alpha}^* = \mathbb{E}_{q^*(f)} [\nabla_f \log p(\mathbf{y} \mid \mathbf{f})]$$
$$(\mathsf{S}^*)^{-1} = \mathsf{K}^{-1} + \boldsymbol{\beta}^* \qquad \qquad \boldsymbol{\beta}^* = \mathbb{E}_{q^*(f)} [-\nabla_f^2 \log p(\mathbf{y} \mid \mathbf{f})]$$

 \Rightarrow optimal Gaussian approximate posterior for factorizing likelihoods:

$$q^*(\mathbf{f}) = \frac{1}{Z}p(\mathbf{f})\prod_{i=1}^n t_i(f_i)$$

ti.john@aalto.fi / 🎔 @scien_ti_st

Optimal posterior decomposition

Natural gradient updates:

$$\lambda^{k+1} = (1 - \rho)\lambda^{k} + \rho \nabla_{\mu} \mathbb{E}_{q(f)}[\log p(\mathbf{y} | \mathbf{f})]$$

$$learning rate$$

cheap: same cost as standard gradient descent, no dense Hessian required!

Learning hyperparameters θ

- ▶ $p(\theta \mid D)$: e.g. MCMC
- ▶ point estimate θ^*
 - maximum likelihood: $\theta^* = \arg \max_{\theta} p(\mathcal{D} | \theta)$

Marginal likelihood

$$\log p(\mathcal{D} | \theta) = \log \int p(\mathcal{D} | \mathbf{f}) p(\mathbf{f} | \theta) d\mathbf{f}$$

Laplace:
$$\log p(\mathbf{y} | \theta) = \log \int \exp(\mathcal{L}_{\text{Lap}}(\mathbf{f})) d\mathbf{f}$$
$$\approx \mathcal{L}_{\text{Lap}}(\mathbf{f}^*) - \frac{1}{2} \log \det S_{\text{Lap}} + \text{const.}$$

VI:
$$\log p(\mathbf{y} | \theta) \ge \mathcal{L}_{\text{ELBO}}[q^*]$$
EP:
$$\log p(\mathbf{y} | \theta) \approx \mathcal{L}_{\text{EP}}[q^*]$$
$$= \log \int p(\mathbf{f}) \prod_{i=1}^{n} t(f_i) d\mathbf{f}$$

Same form as dual parameterization!

ti.john@aalto.fi / ♥ @scien_ti_st

ti.john@aalto.fi / 🎔 @scien_ti_st

Marginal likelihood estimation

Variational Expectation–Maximization

$$\begin{array}{ll} \text{E-step (inference):} & \boldsymbol{\lambda}^{(k+1)} \leftarrow \arg\max_{\boldsymbol{\lambda}} \mathcal{L}_{\mathrm{E}}(\boldsymbol{\lambda}, \boldsymbol{\theta}^{(k)}) \\ \text{M-step (learning):} & \boldsymbol{\theta}^{(k+1)} \leftarrow \arg\max_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{M}}(\boldsymbol{\lambda}^{(k+1)}, \boldsymbol{\theta}) \end{array} \end{array}$$

$$\mathcal{L}_{\rm E} \equiv \mathcal{L}_{\sf ELBO}$$
 $\mathcal{L}_{\rm M} \equiv \mathcal{L}_{\sf EP}$

	(n, d)	LA	EP	VI	Ours	МСМС
trains	(10, 30)	-0.702±0.025	-0.698 ± 0.033	-0.702 ± 0.037	-0.691 ± 0.046	-0.692 ± 0.025
balloons	(16, 5)	-0.660 ± 0.125	-0.650 ± 0.128	-0.649 ± 0.185	-0.607 ± 0.227	-0.684 ± 0.076
fertility	(100, 10)	-0.388 ± 0.122	-0.384 ± 0.149	-0.393 ± 0.136	-0.397 ± 0.139	-0.382 ± 0.126
pittsburg-bridges-T-OR-D	(102, 8)	-0.299 ± 0.081	-0.321 ± 0.108	-0.290 ± 0.110	-0.293 ± 0.116	-0.306 ± 0.115
acute-nephritis	(120, 7)	-0.203 ± 0.012	-0.046 ± 0.007	-0.007 ± 0.002	-0.005 ± 0.002	-0.005 ± 0.002
acute-inflammation	(120, 7)	$-0.184{\pm}0.018$	-0.052 ± 0.007	-0.007 ± 0.002	-0.007 ± 0.002	-0.007 ± 0.003
echocardiogram	(131, 11)	-0.424 ± 0.093	-0.418 ± 0.095	-0.425 ± 0.110	-0.428 ± 0.112	-0.437 ± 0.127
hepatitis	(155, 20)	-0.370 ± 0.071	-0.372 ± 0.072	-0.364 ± 0.090	-0.367 ± 0.094	-0.369 ± 0.091
parkinsons	(195, 23)	-0.260 ± 0.031	-0.295 ± 0.056	-0.160 ± 0.050	-0.141 ± 0.046	-0.145 ± 0.044
breast-cancer-wisc-prog	(198, 34)	-0.458 ± 0.075	-0.473 ± 0.091	-0.457 ± 0.085	-0.460 ± 0.088	-0.464 ± 0.085
spect	(265, 23)	-0.593 ± 0.049	-0.590 ± 0.055	-0.594 ± 0.054	-0.595 ± 0.054	-0.596 ± 0.051
statlog-heart	(270, 14)	-0.395 ± 0.064	$-0.389 {\pm} 0.061$	-0.396 ± 0.071	-0.397 ± 0.071	-0.397 ± 0.070
haberman-survival	(306, 4)	-0.530 ± 0.053	-0.532 ± 0.059	-0.531 ± 0.055	-0.531 ± 0.055	-0.520 ± 0.063
ionosphere	(351, 34)	-0.224 ± 0.042	-0.230 ± 0.042	-0.170 ± 0.048	-0.170 ± 0.055	-0.179 ± 0.058
horse-colic	(368, 26)	-0.463 ± 0.059	-0.452 ± 0.057	-0.467 ± 0.072	-0.473 ± 0.082	-0.469 ± 0.079
congressional-voting	(435, 17)	-0.640 ± 0.028	-0.639 ± 0.030	-0.641 ± 0.030	-0.642 ± 0.029	-0.644 ± 0.027
cylinder-bands	(512, 36)	-0.488 ± 0.038	-0.500 ± 0.041	-0.465 ± 0.049	-0.451 ± 0.052	-0.451 ± 0.049
breast-cancer-wisc-diag	(569, 31)	-0.085 ± 0.026	$-0.140{\pm}0.020$	-0.077 ± 0.044	-0.075 ± 0.045	-0.076 ± 0.043
ilpd-indian-liver	(583, 10)	-0.513 ± 0.040	$-0.520{\pm}0.041$	-0.512 ± 0.043	-0.512 ± 0.043	-0.512 ± 0.042
monks-2	(601, 7)	-0.491 ± 0.025	-0.512 ± 0.028	-0.464 ± 0.031	-0.442 ± 0.033	-0.437 ± 0.032
statlog-australian-credit	(690, 15)	-0.630 ± 0.026	-0.639 ± 0.036	-0.630 ± 0.026	-0.630 ± 0.026	-0.630 ± 0.025
credit-approval	(690, 16)	-0.342 ± 0.047	-0.342 ± 0.050	-0.341 ± 0.052	-0.342 ± 0.052	-0.341 ± 0.052
breast-cancer-wisc	(699, 10)	-0.094 ± 0.025	-0.093 ± 0.023	-0.093 ± 0.029	-0.093 ± 0.029	-0.093 ± 0.029
blood	(748, 5)	-0.478 ± 0.039	-0.479 ± 0.040	-0.478 ± 0.039	-0.478 ± 0.039	-0.478 ± 0.039
pima	(768, 9)	-0.474 ± 0.033	-0.476 ± 0.038	-0.474 ± 0.035	-0.474 ± 0.035	-0.474 ± 0.035
mammographic	(961, 6)	-0.407 ± 0.038	-0.407 ± 0.040	-0.408 ± 0.040	-0.408 ± 0.040	-0.408 ± 0.040
statlog-german-credit	(1000, 25)	-0.491 ± 0.030	$-0.491{\pm}0.032$	$-0.492{\pm}0.032$	$-0.492{\pm}0.032$	$-0.492{\pm}0.032$
Bold Count		14	13	13	16	/

ti.john@aalto.fi / ♥ @scien_ti_st

Relative accuracy (compared to best method on each data set)

Optimization issues...

What about big data?

Sparse approximation using $\mathbf{u} = f(Z)$:

$$q_{\mathsf{u}}(f(\cdot);\boldsymbol{\xi}_{\mathsf{u}},\boldsymbol{\theta}) = \int p(f(\cdot) \mid \mathbf{u};\boldsymbol{\theta}) q(\mathbf{u};\boldsymbol{\xi}_{\mathsf{u}}) \,\mathrm{d}\mathbf{u},$$

Dual parameters:

$$\hat{\alpha}_i = \mathbb{E}_{q_u(f_i)}[\nabla_{f_i} \log p(y_i \mid f_i)] \qquad \qquad \hat{\beta}_i = \mathbb{E}_{q_u(f_i)}[-\nabla_{f_i}^2 \log p(y_i \mid f_i)]$$

Projection onto sparse inducing points:

$$\boldsymbol{\alpha}_{u} = \sum_{i=1}^{n} \mathbf{k}_{z_{i}} \hat{\alpha}_{i} \qquad \mathbf{B}_{u} = \sum_{i=1}^{n} \mathbf{k}_{z_{i}} \hat{\beta}_{i} \mathbf{k}_{z_{i}}^{\mathsf{T}}$$

$$\underbrace{\mathbf{k}_{z_{i}} \hat{\alpha}_{i}}_{\text{vector evaluated from kernel } \kappa(\mathbf{x}_{i}, \mathbf{z}_{j})}_{\text{vector evaluated from kernel } \kappa(\mathbf{x}_{i}, \mathbf{z}_{j})}$$

ti.john@aalto.fi / 🎔 @scien_ti_st

Sparse marginal likelihood approximations

Additive structure of dual parameterization in sequential learning

$$\hat{\alpha}_{i} = \mathbb{E}_{q_{u}(f_{i})} [\nabla_{f_{i}} \log p(y_{i} \mid f_{i})] \qquad \hat{\beta}_{i} = \mathbb{E}_{q_{u}(f_{i})} [-\nabla_{f_{i}}^{2} \log p(y_{i} \mid f_{i})]$$
$$\boldsymbol{\alpha}_{u} = \sum_{i=1}^{n} \mathbf{k}_{z_{i}} \hat{\alpha}_{i} \qquad \mathbf{B}_{u} = \sum_{i=1}^{n} \mathbf{k}_{z_{i}} \hat{\beta}_{i} \mathbf{k}_{z_{i}}^{\mathsf{T}}$$

$$\mathcal{L}_{\text{batch}}(\mathbf{m}, \mathsf{S} \mid \mathcal{D}) = \sum_{i \in \mathcal{D}} \mathbb{E}_{q_{\mathsf{u}}(f_i)}[\log p(y_i \mid f_i)] - \mathrm{KL}[q_{\mathsf{u}}(\mathbf{u}) \parallel p_{\theta}(\mathbf{u})]$$
$$\mathcal{L}_{\text{batch}}(\mathbf{m}, \mathsf{S} \mid \mathcal{D}_{\text{odd}} \cup \mathcal{D}_{\text{new}}) = \sum_{i \in \mathcal{D}_{\text{odd}} \cup \mathcal{D}_{\text{new}}} \mathbb{E}_{q_{\mathsf{u}}(f_i)}[\log p(y_i \mid f_i)] - \mathrm{KL}[q_{\mathsf{u}}(\mathbf{u}) \parallel p_{\theta}(\mathbf{u})]$$

$$\boldsymbol{\alpha}_{u} = \boldsymbol{\alpha}_{u}^{old} + \boldsymbol{\alpha}_{u}^{new}$$
 and $\mathbf{B}_{u} = \mathbf{B}_{u}^{old} + \mathbf{B}_{u}^{new}$

 \blacktriangleright natural gradient descent on new batch to find $\pmb{\alpha}_u^{new}$ and \pmb{B}_u^{new}

ti.john@aalto.fi / 🎔 @scien_ti_st

Continual learning

Bayesian optimization with fantasizing

Learning from the dual parameterization

- ▶ Dual parameters: derivatives of log likelihood ⇔ sensitivities w.r.t. data points
- + Cheap natural gradient updates
- + EP-like objective for hyperparameter learning
- + Good parameterization for sequential learning

Find out more:

- Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models. Li, John, & Solin; ICML 2023. (arXiv:2306.04201)
- Memory-Based Dual Gaussian Processes for Sequential Learning.
 Chang, Verma, John, Solin, & Khan; ICML 2023.
 (arXiv:2306.03566)
- b *Dual parameterization for dummies* (in preparation, coming to an arXiv near you)

ti.john@aalto.fi / @scien_ti_st