
Gaussian Process Ensembles and the Bayesian Committee Machine

Joint work with Vincent Dutordoir (University of Cambridge)

Nicolas Durrande (Monumo) — LIKE23 Bern

Bern, June 2022

1 / 22



Gaussian process models do scale

We have various tools at our belt to do so:

• Exploit structure in kernel matrices (GP with Markov property, ...)

• Sparse GPs (variational inference, ...)

• Solving matrix inverse approximately (conjugate gradients, ...)

• GP ensembles
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Sparse GP models



Sparse GPs

Sparse GPs is an approach to cope with large datasets (104 to 106 points)
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Sparse GPs replace the n observations (X ,Y ) by m “pseudo-observations” (Z ,U) where U ∼ N (µ,Σ)
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The approximate posterior distribution is GP(msparse , csparse) with

msparse(x) = k(x ,Z)k(Z ,Z)−1µ

csparse(x , y) = k(x , y)− k(x ,Z)k(Z ,Z)−1k(Z , y) + k(x ,Z)k(Z ,Z)−1Σk(Z ,Z)−1k(Z , y)
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Variational Inference

The distribution of the inducing variables U ∼ N (µ,Σ) is chosen by minimising the Kullback-Leibler

divergence:

min
µ,Σ

KL

(∫
p(f (.)|f (Z) = U)dU︸ ︷︷ ︸

qf

∣∣∣∣∣ p(f (.)|f (X ) + ε = Y )︸ ︷︷ ︸
pf |Y

)

Computational complexity of Sparse GPs is O(nm2 +m3).
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GP ensembles



GP ensembles in a nutshell
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Three basic steps:

1. Split data into subsets

2. Train one GP model per subset

3. At prediction time, aggregate

submodels posteriors
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Aggregation methods

Historical

• Bayesian Committee

Machine [Tresp 2000]

• Product of Experts

[Hinton 2002]

Improvements

• Generalised Product of

Experts [Cao 2014]

• Robust Bayesian Committee

Machine [Deisenroth 2015]

• Generalized Robust Bayesian

Committee Machine [Liu

2018]∗

Others

• Nested GPs [Rullière

2018]

• Barycentre GPs [Cohen

2020]

• Modular GPs

[Moreno-Muñoz 2021]∗

∗ Not included in our benchmarks.
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Bayesian Committee Machine

Given two data subsets Di ̸= Dj and a prediction point x∗ ∈ X ∗, BCM makes the approximation that

Di ⊥⊥ Dj |f (x∗).

⇒

BCM-1D
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Bayesian Committee Machine

Given two data subsets Di ̸= Dj and a prediction point x∗ ∈ X ∗, BCM makes the approximation that

Di ⊥⊥ Dj |f (x∗).

⇒

BCM-1D
GPR

Performance is poor when predictions are made independently for each x∗... but this is not the original

prescription!
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Bayesian Committee Machine

In Tresp [2000], test points are processed jointly so the approximation is Di ⊥⊥ Dj |f (X ∗) which is a

much weaker assumption:

⇒

BCM
GPR

Prediction cost is O(n3
test), but the ensemble predictions cannot be distinguished from GPR!
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Experimental results 1/2

In practice, increasing the size q of the test set makes a big difference...
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Experimental results 2/2

20 test functions given by Matérn 5/2 GP samples: D = [0, 1]5, ntrain = 20k, ntest = 1k, p = 32, σ2 = 1, θ = 0.5, τ2 = 0.01
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Bayesian Committee Machine Revisited

An alternative way to derive the BCM predictor is to introduce “pseudo-observations” that encapsulate

the information required by the submodels to recover their prediction at X ∗ ∈ Dq.

More precisely, we define the equivalent observation at X ∗ as the tuple
(
Y ∗, ε∗

)
, such that

f (X ∗)
∣∣{f (X ∗) + ε∗ =Y ∗} dist

= f (X ∗)
∣∣{f (X ) + ε =Y },

In this expression, the free variables that are tuned to reach equality are Y ∗ and the covariance matrix

of ε∗ (say T ).
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Bayesian Committee Machine Revisited

Same explanation with a picture...
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With the notation

f (X ∗) ∼ N (µ0,Σ0)

f (X ∗)
∣∣{f (X ) + ε =Y } ∼ N (µ1,Σ1)

the equivalent observation is given by:

Y ∗ = µ0 + TΣ−1
1 (µ1 − µ0)

T =
(
Σ−1

1 − Σ−1
0

)−1
.
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Bayesian Committee Machine Revisited

In order to use equivalent observations in an aggregation procedure, we can:

1. associate to each submodel an equivalent observation (Y ∗
i , ε

∗
i ) located at X ∗

2. compute the values of Y ∗
i and Ti according to previous slide

3. generate predictions at X ∗ by conditioning the prior on all equivalent observations:

f (X ∗)| {f (X ∗) + ε∗i =Y ∗
i }

p
i=1 .

The resulting posterior is normally distributed with mean and variance

µ∗ = Σ∗∑p
i=0 Ti

−1Y ∗
i

Σ∗ =
(∑p

i=0 Ti
−1
)−1

.
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Combining BCM and Sparse GPs



BCM and Sparse GPs

Ensembles can be used to merge the variational distributions of SVGPs submodels by setting

X ∗ =
⋃

i Zi :
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With BCM, this results in a specific structure: variational precision = prior precision + block diagonal
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BCM and Sparse GPs

In this example, training the models independently and aggregating the variational distributions

drastically reduces the number of parameters to be trained (540 instead of 1890!) but yields a very

good accuracy nonetheless.
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BCM and Sparse GPs

One can show that the aggregated model is equivalent to a sparse GP model with inducing variable

U ∼ N
(
K0(K0 + T )−1Y ∗, K0 − K0(K0 + T ∗)−1K0

)
.

where Y ∗ =


Y ∗

Z1

...

Y ∗
Zp

 T ∗ =


TZ1 0

. . .

0 TZp

 .

Can the model be improved by retraining the ELBO of the aggregated ensemble?
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BCM and Sparse GPs

Unfortunately the answer is not really!
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Underlying problem: we hit the issue identified in E. Khan [2013] where parametrising SVGP in

precision space results in non-convex optimisation problems...
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Conclusion



Conclusion

Summary

• GP ensembles are good alternatives for large datasets

• Bayesian Committee Machine works better than most people think!

• Interesting connections between ensemble methods and sparse models

For more details, see:

www.github.com/NicolasDurrande/guepard
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