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Epistemological context

How to analyze complex systems: Among the current approaches to analyze
complex systems
▶ Theory of Dynamical Systems allows to analyze complex systems when the

model is known. It offers nontrivial ways to analyze dynamical systems. It
has the status of Theory. Currently, it is limited to low-dimensional models.

▶ Machine Learning is concerned with algorithms designed to accomplish a
certain task, whose performance improves with the input of more data. It
allows the analysis of some very high-dimensional complex systems on the
basis of data when the model is not even known.
Current limitations: Mostly a set of techniques and algorithms. No
Methodologies. Theory still underdeveloped. It is not clear why the
algorithms work and what is their domain of applicability.

⇝ It makes sense to combine Dynamical Systems and Machine Learning.
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Goal

Goal: Fill the gap between Machine Learning and Dynamical Systems in the
following directions
▶ Machine Learning for Dynamical Systems: how to analyze dynamical systems

on the basis of observed data rather than attempt to study them analytically
(it allows to extend the boundaries of the classical theory of dynamical
systems).

▶ Dynamical Systems for Machine Learning: how to analyze algorithms of
Machine Learning using tools from the theory of dynamical systems (allows
to give solid foundations to the existing methods and understand their true
potential and limits- identify the domain of applicability of the algorithms in
ML).
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Context

As pointed out by Steve Smale, the interaction between Dynamical Systems and
Learning Theory is an important problem1:

“Some years ago, Felipe (Cucker) and I were trying to find something
about the brain science and artificial intelligence starting from literature
on neural nets. It was in this setting that we encountered the beautiful
ideas and fast algorithms of learning theory. Eventually we were motivated
to write on the mathematical foundations of this new area of science.
I have found this arena to, with its new challenges and growing number
of applications, be exciting. For example, the unification of dynamical
systems and learning theory is a major problem. Another problem is to
develop a comparative study of useful algorithms currently available and
to give unity to these algorithms.”

1Felipe Cucker and Ding Xuan Zhou (2007), Learning Theory: An Approximation Theory
Viewpoint.
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Context

“Personal computing has developed to the point where in many cases it
ought to be easier to simulate a dynamical system and analyze the empir-
ical data, rather than attempt to study the system analytically. Indeed,
for large classes of nonlinear systems, numerical analysis may be the only
viable option. Yet the mathematical theory necessary to analyze dynami-
cal systems on the basis of observed data is still largely underdeveloped.”

J. Bouvrie and BH (2012), Empirical Estimators for Stochastically Forced Nonlinear Systems: Observability,
Controllability and the Invariant Measure, https://arxiv.org/pdf/1204.0563v1.pdf
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Outline

• Elements of Learning Theory and Function Approximation in RKHSs
• Probability Measures in RKHSs and the Maximum Mean Discrepancy
• Kernel Flows for Learning Chaotic Dynamical Systems: Parametric Kernel
Flows, NonParametric Kernel Flows, Irregular Observations, Partial Observations,
Sparse Kernel Flows, Hausdorff Metric based Kernel Flows.
• Learning and Detection of Critical Transitions for some Slow-Fast SDEs

Boumediene Hamzi KFs and KMD for DS LIKE’23, 06/2023 6 / 73



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Summary of the Approach

• We assume that there is a ϕ : Rn → H; x 7→ z where H is an RKHS such that
we can perform an analysis (in general, but not necessarily, a linear analysis) in H
then come back to Rn.
• The transformation ϕ is obtained from the kernel that defines the RKHS (in
general, it is not necessary to explicitly find ϕ). In practice, we will use
ϕ(x) = [ϕ1(x) · · ·ϕN(x)]T with

ϕi(x) = K(x, x(ti))

where K is a reproducing kernel and x(ti) are measurements at time ti,
i = 1, · · · ,N and N� n.
• Measurements/Data are used to construct the Hilbert Space where
computations become “simpler”.
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Reproducing Kernel Hilbert Spaces

• Historical Context: Appeared in the 1930s as an answer to the question: when is
it possible to embed a metric space into a Hilbert space ? (Schoenberg, 1937)
• Answer: If the metric satisfies certain conditions, it is possible to embed a
metric space into a special type of Hilbert spaces called RKHSs.
• Properties of RKHSs have been further studied in the 1950s and later
(Aronszajn, 1950; Schwartz, 1964; Wahba, 1990s; Smale, 2000s etc.)
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Reproducing Kernel Hilbert Spaces

• Definition: A Hilbert Space is an inner product space that is complete and
separable with respect to the norm defined by the inner product.
• Definition: For a compact X ⊆ Rd, and a Hilbert space H of functions
f : X → R, we say that H is a RKHS if there exists k : X × X → R such that

i. k has the reproducing property, i.e. ∀f ∈ H, f(x) = 〈f(·), k(·, x)〉 (k is called a
reproducing kernel).

ii. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.
• Definition: A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space H
with a reproducing kernel whose span is dense in H. Equivalently, a RKHS is a
Hilbert space of functions where all evaluation functionals are bounded and linear.
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Reproducing Kernel Hilbert Spaces

The important properties of reproducing kernels are
• The RKHS is unique.
• ∀x, y ∈ X , K(x, y) = K(y, x) (symmetry).
•
∑m

i,j=1 αiαjK(xi, xj) ≥ 0 for αi ∈ R and xi ∈ X (positive definitness).
• 〈K(x, ·),K(y, ·)〉H = K(x, y). Using this property, one can immediately get the
canonical feature map (Aronszajn’s feature map): Φc(x) = K(x, ·).

• A Mercer kernel is a continuous positive definite kernel.
• The fact that Mercer kernels are positive definite and symmetric reminds us of
similar properties of Gramians and covariance matrices. This is an essential fact
that we are going to use in the following.
• Examples of kernels: k(x, x′) = 〈x, x′〉d, k(x, x′) = exp

(
− ||x−x′||22

2σ2

)
,

k(x, x′) = tanh(κ〈x, x′〉+ θ).
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RKHS in Approximation Theory (aka Learning Theory)

• RKHS play an important role in learning theory whose objective is to find an
unknown function f : X→ Y from random samples (xi, yi)|mi=1.
• For instance, assume that the random probability measure that governs the
random samples is ρ and is defined on Z := X× Y. Let X be a compact subset of
Rn and Y = R. If we define the least square error of f as E =

∫
X×Y(f(x)− y)2dρ,

then the function that minimizes the error is the regression function fρ defined as

fρ(x) =
∫
R

ydρ(y|x), x ∈ X,

where ρ(y|x) is the conditional probability measure on R.
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RKHS in Approximation Theory (aka Learning Theory)

• Since ρ is unknown, neither fρ nor E is computable. We only have the samples
s := (xi, yi)|mi=1. The error E is approximated by the empirical error Es(f) by

Es(f) =
1
m

m∑
i=1

(f(xi)− yi)
2 + λ||f||2H,

for λ ≥ 0, λ plays the role of a regularization parameter.
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RKHS in Approximation Theory (aka Learning Theory)

• In learning theory, the minimization is taken over functions from a hypothesis
space often taken to be a ball of a RKHS HK associated to a kernel K, and the
function fs that minimizes the empirical error Es is

fs(x) =
m∑

j=1
cjK(x, xj) =

m∑
j=1

cjϕj(x),

where the coefficients (cj)m
j=1 are obtained by solving the linear system

λm ci +
m∑

j=1
K(xi, xj)cj = yi, i = 1, · · ·m,

and fs is taken as an approximation of the regression function fρ.
• We call learning the process of approximating the unknown function f from
random samples on Z.
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RKHS in Change Point Detection

• We will consider a sequence of samples x1, x2, · · · , xn from a domain X .
• We are interested in detecting a possible change-point τ , such that before τ , the
samples xi ∼ P i.i.d for i ≤ τ , where P is the so-called background distribution,
and after the change-point, the samples xi ∼ Q i.i.d for i ≥ τ + 1, where Q is a
post-change distribution.
• We map the dataset in an RKHS H then compute a measure of discrepancy ∆n.
• ∆n is small if P = Q and large if P and Q are far apart.
• We will use the maximum mean discrepancy (MMD)

MMD[H,P,Q] := sup
f∈H,||f||≤1

{Ex[f(x)]− Ey[f(y)]},

as a measure of heteregoneity.
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Probability Measures in RKHSes

• Let H be an RKHS on the separable metric space X , with a continuous feature
mapping ϕ : X → H. Assume that k is bounded, i.e. supX k(x, x) <∞.
• Let P be the set of Borel probability measures on X . We define the mapping to
H of P ∈ P as the expectation of ϕ(x) with respect to P, i.e.

µP : P → H
P 7→

∫
X ϕ(x)dP(x) =: µk(P) (kernel mean embedding of P)

• The maximum mean discrepancy (MMD) between two probability measures P
and Q is defined as the distance between two such mappings

MMD(P,Q) = ||µk(P)− µk(Q)||Hk
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Probability Measures in RKHSes

• The maximum mean discrepancy (MMD) is defined as (Gretton et al., 2007)
MMD(P,Q) := ||µP − µQ||H,

=
(
Ex,x′(k(x, x′)) + Ey,y′(k(y, y′))− 2Ex,y(k(x, y)

) 1
2

where x

and x′ are independent random variables drawn according to P, y and y′ are
independent random variables drawn according to Q, and x is independent of y.
• This quantity is a pseudo-metric on distributions, i.e. it satisfies all the qualities
of a metric except MMD(P,Q) = 0 iff P = Q.
• For the MMD to be a metric, it is sufficient that the kernel is characteristic, i.e.
the map µP : P → H is injective. This is satisfied by the Gaussian kernel (both on
compact domains and on Rd) for example.
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Probability Measures in RKHSes
• RKHS embedding:

P→ µk(P) = EX∼Pk(·,X) ∈ Hk

P→ [Eφ1(X), · · · ,Eφs(X)] ∈ Rs

Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:

MMDk(P ,Q) = kµk(P )� µk(Q)kHk
= sup

f2Hk: kfkHk
1

|Ef(X)� Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 iff P = Q.
• Gaussian RBF exp(� 1

2�2 kx� x

0k22), Matérn family, inverse multiquadrics.
For characteristic kernels on LCH X , MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDk (Pn, P ) ! 0 , Pn  P.

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings Oslo, 06/05/2017 4 / 18
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Probability Measures in RKHSes

• For characteristic kernels, the MMD metrizes the weak- ⋆ topology on
probability measures

MMDk(Pn,P)→ 0⇔ Pn ⇝ P
• For characteristic kernels: convergence in distribution iff convergence in MMD.
• It is an Integral Probability Metric that can be computed directly from data
without having to estimate the density as an intermediate step.
• Given two i.i.d samples (x1, · · · , xm) from P and (y1, · · · , ym) from Q, an
unbiased estimate of the MMD is

MMD2
u :=

1
m(m− 1)

m∑
i̸=j

[k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj, yi)]
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Kernel Flows for Learning Chaotic Dynamical Systems
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Kernel Flows for Learning Chaotic Dynamical Systems

• Problem P : Given input/output data (x1, y1), · · · , (xN, yN) ∈ X ×R, recover an
unknown function u∗ mapping X to R such that u∗(xi) = yi for i ∈ {1, ...,N}.
• In the setting of optimal recovery, Problem P can be turned into a well posed
problem by restricting candidates for u to belong to a Banach space of functions
B endowed with a norm defined as

||u||2 = supϕ∈B∗
(
∫
ϕ(x)u(x)dx)2

(
∫
ϕ(x)K(x, y)ϕ(y)dxdy)

and identifying the optimal recovery as the minimizer of the relative error

minvmaxu
||u− v||2
||u||2 ,

where the max is taken over u ∈ B and the min is taken over candidates in v ∈ B
such that v(xi) = u(xi) = yi.
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Kernel Flows for Learning Chaotic Dynamical Systems

• The method of KFs is based on the premise that a kernel is good if there is no
significant loss in accuracy in the prediction error if the number of data points is
halved. This led to the introduction of

ρ =
||v∗ − vs||2

||v∗||2

which is the relative error between v∗, the optimal recovery of u∗ based on the full
dataset X = {(x1, y1), . . . , (xN, yN)}, and vs the optimal recovery of both u∗ and
v∗ based on half of the dataset Xs = {(xi, yi) | i ∈ S} (Card(S) = N/2) which
admits the representation

vs = (ys)TAsK(xs, ·)

with ys = {yi | i ∈ S}, xs = {xi | i ∈ S}, As = (Θs)−1, Θs
i,j = K(xs

i , xs
j ).
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Kernel Flows for Learning Chaotic Dynamical Systems

Given a family of kernels Kθ(x, x′) parameterized by θ, the KF algorithm can then
be described as follows :

1. Select random subvectors Xb and Yb of X and Y (through uniform sampling
without replacement in the index set {1, . . . ,N})

2. Select random subvectors Xc and Yc of Xb and Yb (by selecting, at random,
uniformly and without replacement, half of the indices defining Xb)

3. Let
ρ(θ,Xb,Yb,Xc,Yc) := 1− Yc,TKθ(Xc,Xc)−1Yc

Yf,TKθ(Xb,Xb)−1Yb ,

be the squared relative error (in the RKHS norm ‖ · ‖Kθ
defined by Kθ)

between the interpolants ub and uc obtained from the two nested subsets of
the dataset and the kernel Kθ

4. Evolve θ in the gradient descent direction of ρ, i.e. θ ← θ − δ∇θρ

5. Repeat.
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Kernel Flows for Learning Chaotic Dynamical Systems

• Let x1, . . . , xk, . . . be a time series in Rd. Our goal is to forecast xn+1 given the
observation of x1, . . . , xn.
• We work under the assumption that this time series can be approximated by a
solution of a dynamical system of the form

zk+1 = f†(zk, . . . , zk−τ†+1),

where τ † ∈ N∗ and f† may be unknown.
• Given τ ∈ N∗, the approximation of the dynamical can then be recast as that of
interpolating f† from pointwise measurements

f†(Xk) = Yk for k = 1, . . . ,N

with Xk := (xk+τ−1, . . . , xk), Yk := xk+τ and N = n− τ .
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Kernel Flows for Learning Chaotic Dynamical Systems

• Given a reproducing kernel Hilbert space of candidates for f†, and using the
relative error in the RKHS norm ‖ · ‖ as a loss, the regression of the data (Xk,Yk)
with the kernel K associated with provides a minimax optimal approximation of f†
in . This interpolant (in the absence of measurement noise) is

f(x) = K(x,X)(K(X,X))−1Y

where X = (X1, . . . ,XN), Y = (Y1, . . . ,YN), k(X,X) for the N× N matrix with
entries k(Xi,Xi), and k(x,X) is the N vector with entries k(x,Xi).
• Use different variants of Kernel Flows (KF) to learn the kernel K from the data
(Xk,Yk).
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Kernel Flows for Learning Chaotic Dynamical Systems
Assume the kernel K to be parameterized by θ. To update θ in Kθ, we minimize
one of the following metrics (different variants of KFs)
▶ Metric associated to the RKHS norm

ρ(θ,Xb,Yb,Xc,Yc) := 1− Yc,TKθ(Xc,Xc)−1Yc
Yf,TKθ(Xb,Xb)−1Yb

▶ Metric associated to Lyapunov exponents and minimize

ρL = |λmax,N − λmax,N/2|

▶ Metric associated to the Maximum Mean Discrepancy (MMD) and minimize

ρMMD = MMD(S1, S2)

between two different samples of the time series.
▶ Metric associated to the Hausdorff distance and minimize

ρHD = HD(AN,AN/2)
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Kernel Flows for Learning Chaotic Dynamical Systems

• We use the kernel

k(x, y) = α0 max{0, 1− ||x− y||22|
σ0

}+ α1 e
||x−y||22

σ2
1 + α2e

− ||x−y||2
σ2

2

+ α3e−σ3 sin
2(σ4π||x−y||2)e

− ||x−y||22
σ2

5 + α4||x− y||22
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Kernel Flows for Learning Chaotic Dynamical Systems

• Bernoulli map x(k + 1) = 2x(k) mod 1

(a) Time series generated by the true
dynamics (red) and the approximation

(blue) with the learned kernel (left)
and the initial kernel (right), for an

irrational initial condition π/10.

(b) Time series generated by the true
dynamics (red), the approximation with

the learned kernel (blue), the kernel
approximation without learning the
kernel (green), for a rational initial

condition 0.1

Figure: Time series generated by the true dynamics, approximation using the learned
kernel and the kernel without learning for different initial conditions
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Kernel Flows for Learning Chaotic Dynamical Systems

• Lorenz system

dx
dt = s(y− x)
dy
dt = rx− y− xz
dz
dt = xy− bz

with s = 10, r = 28, b = 10/3.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Time series generated by the true dynamics (red) and the approximation with the
learned kernel (blue) - x component in the left figure, y component in the middle figure,
z component in the right figure.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Difference between the true and the approximated dynamics with the learned
kernel using ρ (red (first, third and fifth from the left)), with the initial kernel (green
(second, fourth and sixth from the left)). x-component in the two figures at the left,
y-component in the middle two figures, z-component in the right two figures.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Projection of the true attractor and approximation of the attractor using a
learned kernel on the XY,XZ and YZ axes (first, third and fifth from the left), Projection
of the true attractor and approximation of the attractor using with initial kernel on the
XY,XZ and YZ axes (second, fourth and sixth from the left)
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: True attractor (blue) and approximation of the attractor using a learned kernel
(red) [left], True attractor (blue) and approximation of the attractor using initial kernel
(red) [right]
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Kernel Flows for Learning Chaotic Dynamical Systems
• HYCOM: 800 core-hours per day of forecast on a Cray XC40 system
• CESM: 17 million core-hours on Yellowstone, NCAR’s high-performance computing resource
• Architecture optimized LSTM: 3 hours of wall time on 128 compute nodes of the Theta supercomputer.
• Our method: 40 seconds to train on a single node machine (laptop) without acceleration
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Kernel Flows for Learning Chaotic Dynamical Systems
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

• Write X := (X1, . . . ,XN) and Y := (Y1, . . . ,YN) for the input/output training
data. Our goal is to learn a kernel of the form

Kϕ(x, x′) = K(ϕ(x, 1), ϕ(x′, 1)) ,

where K is a standard kernel and ϕ maps the input space into itself.
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

• The warping of the input space ϕ satisfies the following ODE{
ϕ̇(x, t) = v(ϕ(x, t), t)
ϕ(x, 0) = x

with
v(x, t) = Γ(x, q)Γ(q, q)−1q̇, and q̇ = −∇

[
ρ(q)

]
,

where
▶ q corresponds to position variables in XN starting from

q(0) = X = (X1, · · · ,XN).
▶ Γ is an operator/vector-valued kernel, Γ(q, q) is an N× N matrix with entries

Γ(qi, qj).
▶ Γ(x, q) is a 1× N vector with entries Γ(x, qi).
▶ ρ is the kernel flow loss associated with the input/output data (q,Y).
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

• Using an explicit Euler scheme and regularizing with a nugget λ > 0 leads to an
iteration of the form

ϕn+1(x) = ϕn(x) + ϵvn(ϕn(x)).
with ϕ0(x) = x.
• Writing X = (X1, . . . ,XN) for the training points and
qn := ϕn(X) := (ϕn(X1), . . . , ϕn(XN)), the discretized equations take the form

qn+1 = qn − ϵ∇ρ(qn)

and
vn(x) = Γ(x, qn)

(
Γ(qn, qn) + λI

)−1
(qn+1 − qn)/ϵ
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

(a) Time series (red) and the prediction (blue)
by the learned kernel with ρ

(b) Time series (red) and the prediction
(blue) by the learned kernel with ρMMD

Figure: Prediction results for the Bernoulli map
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Figure: Deformation of input for different iterations of the flow function ϕL (left) and
deformed final data (right).

Figure: Convergence of the losses ρ and ρMMD.
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Kernel Flows for Learning Irregularly-Sampled Time Series

• The above approach fails to be accurate for irregularly sampled series because it
discards the information contained in the tk.
• To address this issue, we consider the model

xk+1 = f†(xk,∆k, . . . , xk−τ†+1,∆k−τ†+1),

which incorporates the time differences ∆k = tk+1 − tk between observations.
• That is, we employ a time-aware time series representations by interleaving
observations and time differences.
• The proposed strategy is then to construct a surrogate model by regressing f†
from past data and a kernel Kθ learned with Kernel Flows as described previously.
Note that the past data takes are Xk := (xk,∆k, . . . , xk+τ−1,∆k+τ−1), Yk := xk+1
and N = n− τ .
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Attractor reconstruction (left), Time series reconstruction (right) without
learning the kernel

Boumediene Hamzi KFs and KMD for DS LIKE’23, 06/2023 41 / 73



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Reconstruction of the test time series of the Lorenz map with regular Kernel
Flows (left) and irregular KFs (regular).
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Approach with regular Kernel Flows (left), Approach with irregular Kernel Flows
(right).

Boumediene Hamzi KFs and KMD for DS LIKE’23, 06/2023 43 / 73



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kernel Flows for Learning Partially-Observed Dynamical
Systems

• Consider the dynamical system

x(k + 1) = f(x(k)) =
[

fn(x)
fm(x)

]
where f ∈ C(Rn × Rm,Rn+m).
• We assume that we have access to measurements from the first n components
of the x−variable that we denote as xn and that the remaining m components,
that we denote as xm, are not observed, i.e. we only observe xn(1), . . . , xn(l). Our
goal is to forecast x(l + 1) given the observation of xn(1), . . . , xn(l).
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

• This is equivalent to minimizing the following optimization problem w.r.t fn, fm
and the the unknown m−variables required in the representer formula.

min L = ||fn||2Γ1 + ||fm||
2
Γ2 + λ

N∑
i=1

(
(fn(xn

i , xm
i )− xn

i+1)
2 + (fm(xn

i , xm
i )− xm

i+1)
2
)
,

• Let A = (xn
2, · · · , xn

l+1), B = (xm
2 , · · · , xm

l+1), C = (. . . , (xn
i , xm

i ), . . .).
The minimizers of the loss L are fn(·) = Γ1(·,C)(Γ1(C,C) + λ−1Id)−1A,
fm(·) = Γ2(·,C)(Γ2(C,C) + λ−1Id)−1B which leads to the following reduced
optimization problem

minBAT(Γ1(C,C) + λ−1Id)−1A + BT(Γ2(C,C) + λ−1Id)−1B
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Kernel Flows for Learning Partially-Observed Dynamical
Systems
Consider the Lorenz system

ẋ = σ(y− x),
ẏ = x(ρ− z)− y,
ż = xy− βz

with σ = 10, ρ = 28, β = 8
3 . First, we consider the case where we have access to

the x and y variables but not z.
We follow the following steps: i.) find the auxiliary variable za, ii.) use kernel
flows to learn the parameters of the kernel

Kθ (x, y) =θ
2
1 exp

−∥x − y∥2
2

2θ2
0

 + θ
2
3
(

x⊤y + θ
2
2
)2

+ θ
2
6
(
θ

2
4 + θ

2
5∥x − y∥2

2
)− 1

2 + θ
2
9
(
θ

2
8 + ∥x − y∥2

2
)−θ7 +

θ
2
11

1 +
∥x − y∥2

2
θ2

10

−1
+ θ

2
12 max

0, 1 −
∥x − y∥2

2
θ2

13

 + θ
2
14 exp

−∥x − y∥2
2θ2

15

+

θ
2
16 exp

− sin2 (π∥x − y∥2
2/θ17

)
θ2

18

 exp

−
∥x − y∥2

2
θ19

 + θ
2
20 exp

− sin2 (π∥x − y∥2
2/θ21

)
θ2

22
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

We generate 200 data points using initial conditions x(0) = 0, y(0) = 0, z(0) = 0,
and sampling time ts = 0.01, and we use gradient descent with step size η = 10−7

to solve the optimization problem to find the auxiliary variable za.
For prediction, we started with a time delay τ † = 3 but the results were poor. By
increasing the time delay to τ † = 4, the results improve and are in the figures
below.
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

True (blue) vs. Prediction (red) of the x variable (top), True (blue) vs. Prediction (red) of the y variable (middle), True (blue) vs. Prediction (red) of the y

variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems
The errors between the true and approximated values over longer simulation
intervals are plotted in the figures below.

Figure: Errors between the true and the approximation of x−variable (top), the true and
the approximation of y−variable (middle), and the true and the approximation of
z−variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Figure: Reconstruction from true data (blue) vs. approximation (red) of the attractor.
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Sparse Kernel Flows for Learning Chaotic Dynamics

• Consider a kernel of the form

Kβ,θ(x, y) =
m∑

i=1
θ2

i ki(x, y;β)

• Sparsify Kβ,θ by L1 regularization

L(β, θ) = argmin
β,θ

1−
y⊤c K−1

β,θyc

y⊤b K−1
β,θyb

+ λ‖θ‖1

• We apply it to a database of 131 chaotic dynamical systems.
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Sparse Kernel Flows for Learning Chaotic Dynamics

We use the following kernel

K(x, y) =θ
2
1 exp

−∥x − y∥2
2

2β2
1

 + θ
2
2
(

x⊤y + β
2
2
)2

+ θ
2
3
(
β

2
3 + β

2
4∥x − y∥2

2
)− 1

2 + θ
2
4
(
β

2
6 + ∥x − y∥2

2
)−β5

+ θ
2
5

1 +
∥x − y∥2

2
β2

7

−1
+ θ

2
6 max

0, 1 −
∥x − y∥2

2
β2

8



+ θ
2
7 exp

− sin2 (π∥x − y∥2
2/β9

)
β2

10

 exp

−
∥x − y∥2

2
β11

 + θ
2
8 exp

− sin2 (π∥x − y∥2
2/β12

)
β2

13


+ θ

2
9 exp

−∥x − y∥2
2β2

14

 + θ
2
10
(
β

2
15 + β

2
16∥x − y∥2

)− 1
2 +

θ
2
11
(
β

2
18 + ∥x − y∥2

)−β17 + θ
2
12

1 +
∥x − y∥2

β2
19

−1
+ θ

2
13 max

0, 1 −
∥x − y∥2

β2
20


+ θ

2
14 exp

− sin2 (π∥x − y∥2/β21
)

β2
22

 exp

(
−

∥x − y∥2
β23

)

+ θ
2
15 exp

− sin2 (π∥x − y∥2/β24
)

β2
25
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 1: Complex Ca2+oscillations

d
dtz = Vin − V2 + V3 + kfy− kz
d
dty = V2 − V3 − kfy
d
dta = βV4 − V5 − ϵa

where Vin = V0 + V1β, V2 = VM2
z2

K2
2+z2 , V3 = VM3

zm

Km
z +zm

y2

K2
y+y2

a4

K4
a+a4 ,

V5 = VM5
ap

Kp
5+ap

zn

Kn
d+zn .
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Sparse Kernel Flows for Learning Chaotic Dynamics
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 2: Multiple interacting Chua electronic circuits
Equation:

d
dtx = a(y− f(x))
d
dty = x− y + z
d
dtz = −by

where

f(x) = m7x +
5∑

i=1

1
2 (mi −mi+1) (|x + ci+1| − |x− ci+1|)
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Sparse Kernel Flows for Learning Chaotic Dynamics
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Sparse Kernel Flows for Learning Chaotic Dynamics

Index Name CaTwoPlusQuasiperiodic MultiChua

Regular KFs Sparse KFs
(λ = 1) Regular KFs Sparse KFs

(λ = 2)

coefficients θ1 3.007 0.169 1.149 1.016
θ2 15.886 -3.287 1.558 1.834
θ3 2.260 0.495 1.131 0.965
θ4 3.290 0.166 1.152 0.974
θ5 3.297 0.113 1.152 0.965
θ6 4.735 0.009 0.731 0.853
θ7 5.063 0 1.516 0.852
θ8 0.947 0.769 0.162 0
θ9 3.055 0.294 1.378 1.013
θ10 2.404 0.505 1.307 0.962
θ11 3.892 0.204 1.575 1.017
θ12 3.895 0.133 1.578 1.019
θ13 6.611 0 1.294 0.941
θ14 8.462 -0.038 3.709 1.220
θ15 -2.451 7.375 0.538 0.232

error criterion SMAPE 0.006 3.40 × 10−5 0.069 0.004
Hausdorff Distance 2.789 0.013 12.056 0.216
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Hausdorff metric based Kernel Flows for Learning Chaotic
Dynamics

• Consider a kernel of the form

Kβ,θ(x, y) =
m∑

i=1
θ2

i ki(x, y;β)

• Sparsify Kβ,θ by L1 regularization and learn its parameters via cross-validation
of the Hausdorff metric between the reconstruction of the attractor from N points
and the reconstruction of the attractor from N/2 points

L(β, θ) = argmin
β,θ

HD(AN,AN/2) + λ‖θ‖1

• We apply it to a database of 131 chaotic dynamical systems.
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Hausdorff metric based Kernel Flows for Learning Chaotic
Dynamics
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Figure: Comparison of four methods for the examples. In each plot, the green line
presents true trajectory and the red line present predicted trajectory, respectively.
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Hausdorff metric based Kernel Flows for Learning Chaotic
Dynamics

Regular HD Regular Sparse HD Sparse
Methods
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Figure: Distribution of forecasting errors for different methods for all 133 dynamical
systems.
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Detection of Critical Transitions for MultiScale Systems
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Detection of Critical Transitions for MultiScale Systems

• Consider the fast-slow SDE

ẋ1 =
1
ϵ

f1(x1, x2) +
σ1√
ϵ
η1(τ),

ẋ2 = f2(x1, x2) + σ2η2(τ)

where f1 ∈ C(R2;R) and f2 ∈ C(R2;R) are Lipschitz and η1, η2 are independent
white Gaussian noises.
• x1 is a fast variable in comparison to the slow variable x2.
• The set C0 = {(x1, x2) ∈ R2 : f1(x1, x2) = 0} is called the critical manifold.
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MultiScale Systems

• The van der Pol model.
• The equations of the model are

ẋ1 =
1
ϵ
(x2 −

27
4 δ3 x2

1(x1 + δ)) +
σ1√
ϵ
η1(t)

ẋ2 = −δ

2 − x1 + σ2η2(t)

δ = 1, σ1 = 0.1, σ2 = 0.1, ε = 0.01.
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MultiScale Systems

PREDICTABILITY OF CRITICAL TRANSITIONS PHYSICAL REVIEW E 92, 052905 (2015)
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FIG. 2. (Color online) Time series of the fast variable x and
the slow variable y of the QIF model, simulated using the Euler-
Maruyama method with parameter values (ϵ,δ,σ1) = (0.02,0.5,0.2).

also resembles the theta model for excitable neurons [43,44].
In the noiseless case, the value of y determines the number of
equilibria of the fast flow of x. For a positive y, we have two
equilibrium branches Ca±

0 = {x = ±√
y,y > 0}, whose union

together with the fold point at (0,0) is the critical manifold C0.
Note that Ca+

0 is attracting, while Ca−
0 is repelling. When

y is negative, the fast subsystem has no equilibria at all. In
particular, a saddle-node (or fold) bifurcation occurs at y = 0.
Therefore, the critical manifold of the QIF model is attracting
in quadrant I (x > 0,y > 0) and repelling in quadrant II
(x < 0,y > 0) as is illustrated in Fig. 1.

When 0 < ϵ ≪ 1 and starting from the point (1,1) and
uniformly decreasing y, the trajectory of the solution travels
near the attracting critical manifold Ca+

0 towards the fold point
(0,0). Shortly before reaching the fold point, depending upon
the noise level, the system may perform a noise-induced jump
across the flattening potential barrier between the stable and
the unstable equilibria and arrive in quadrant II. In quadrant
II, the repelling critical manifold drives the system further and
further towards negative infinity in x. In our model, however,
the system is considered to be in an excited state, when the
fast variable x is below a threshold −δ and reset to the initial
condition (1,1).

Numerical simulations of equations (11) and (12) using
the Euler-Maruyama method [45] generate time series of N
observations {xn} and {yn} at discrete time steps tn = t0 + n$t .
Here t0 denotes the initial time, n = 0,1, . . . ,N − 1 is the
index of each time step, and $ is a constant time interval of
numerical integration.

As illustrated in Fig. 2, CTs can be observed in the time
series of the fast variable x while the slow variable y acts as
the slowly changing bifurcation parameter. Since the system is
reset to the initial state (1,1) after x exceeds a certain threshold
−δ, we can use the QIF model to generate an arbitrary amount
of CTs, which we are going to investigate below from a
statistical perspective.

The stochastic QIF model may not only have direct
relevance for many transitions in neuroscience [42,46] as a
local normal form to model the subthreshold dynamics before
spiking or bursting but the QIF model could also be viewed

as useful for any applications with local fold dynamics and
global resets.

B. The van der Pol model

In addition to the purely local QIF model with resets, it
is also natural to compare it to a model, where the resets
are via a smooth global nonlinearity. The classical example
to study are van der Pol [47] (or FitzHugh-Nagumo [48])
relaxation oscillators [49]. In particular, we consider f (x,y) =
y − 27

4δ3 x
2(x + δ), F (x,y) ≡ 1, g(x,y) = − δ

2 − x, G(x,y) ≡
0 and obtain a version of the van der Pol (vdP) system

ẋ = 1
ϵ

[
y − 27

4δ3
x2(x + δ)

]
+ σ1√

ϵ
η1(t), (13)

ẏ = − δ

2
− x. (14)

The precise choice of the form of the model will be motivated
in more detail below, particularly with respect to the parameter
δ. When the external stimulus exceeds a certain threshold, the
behavior of the system changes qualitatively from a stable
fixed point to a limit cycle undergoing a Hopf bifurcation.

The deterministic version of the model, i.e., σ1 = 0, has one
fixed point, (xFP,yFP) = (− δ

2 , 27
32 ), which is unstable under the

assumptions δ ∈ (−
√

3,0) and 0 < ϵ ≪ 1. A trajectory of the
stochastic vdP (σ1 ̸= 0) forms a noisy relaxation-oscillation-
type periodic orbit involving two rapid transitions and two slow
drifts as is illustrated in Fig. 3. Since the critical manifold of
the vdP model has two fold points at (− 2

3δ,1) and (0,0), the
manifold is naturally split into three parts (left, middle, and
right)

Cl
vdP = CvdP ∩

{
(x,y) : x < − 2

3δ
}
, (15)

Cm
vdP = CvdP ∩

{
(x,y) : − 2

3δ < x < 0
}
, (16)

Cr
vdP = CvdP ∩ {(x,y) : x > 0}. (17)

By investigating the stability of the equilibria of of the fast
variable x for a fixed y (in the ϵ → 0 limit), we see that Cl

vdP,
Cr

vdP are normally hyperbolic attracting parts of the critical

−0.2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1  0.1  0.2 x

yvdP model

(0,0)

(−2δ/3,1)

FIG. 3. (Color online) The dynamics of the vdP model. The
parameters (ϵ,δ,σ1) = (0.02,0.5,0.1). Analogous to Fig. 1, the critical
manifold (black lines, solid for the attracting part and dashed for the
repelling part), the fold points at (− 2

3 δ,1) and (0,0) (red circles) and
the numerical solution trajectory [blue (gray) solid line] are plotted
in state space. The dashed double arrows indicate the orientation of
the relaxations in the noisy case and the noise-induced transitions for
the fast variable.

052905-3
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MultiScale Systems
• Numerical Simulation
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Detection of Critical Transitions for MultiScale Systems

• We’ll use the following Gabor wavelet as basis to build the reproducing kernel :

Gτ,ω,θ(t) := (
2
π3 )

1
4

√
ω

α
cos(ω(t− τ) + θ)e−

ω2(t−τ)2
α2 , t, τ, θ ∈ R ω, α > 0

This wavelet allows only to recognize modes of the form t→ cos(ω(t− τ) + θ) “à
la Fourier series”.
• In our context, we extend these wavelets to detect signals of the form
t→ y(ω(t− τ) + θ) for 2π-periodic signal y ∈ L2([0, 2π]). This can be done using

χy;τ,ω,θ(t) := (
2
π3 )

1
4

√
ω

α
y(ω(t− τ) + θ)e−

ω2(t−τ)2
α2 , t, τ, θ ∈ R ω, α > 0

Given χ, we construct the Gram matrix whose entries are

Ky;τ,ω,θ(s, t) := χy;τ,ω,θ(s)χy;τ,ω,θ(t), s, t ∈ [0, 1]
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Detection of Critical Transitions for MultiScale Systems
• The reproducing kernel Ky associated to y, we integrate Ky;τ,ω,θ(s, t) w.r.t
τ, ω, θ over their domain of definition :

Ky(s, t) =
∫ θmax

θmin

∫ ωmax

ωmin

∫ τmax

τmin

Ky;τ,ω,θ(s, t)dτ dω dθ, s, t ∈ [0, 1]

• For stochastic van der Pol, the function y and the corresponding kernel are

Figure: The function y used to build the kernel k(s, t) (left), Projection on the s−axis of
the plot of the kernel KG(s, t) from vs. kernel Kχ(s, t) (right)
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Detection of Critical Transitions for MultiScale Systems

Figure: Reconstruction and noise for stochastic Van der Pol
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Detection of Critical Transitions for MultiScale Systems

• We define the energy of a sliding window Wi = [iτ, (i + 1)τ ] of width τ as

Ei = vT
i K−1

T KωiK−1
T vi

where KT (s, t) =
∑

i Kwi(s, t) + σ2Id with σ large and Id the identity matrix, vi is
the signal in the interval [iτ, (i + 1)τ ], Kwi(s, t) = K(x(s), x(t)) with s, t ∈Wi, and
Kwi(s, t) = 0 otherwise.
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Detection of Critical Transitions for MultiScale Systems

Figure: Energy E for α = 0.01 (top left) and α = 0.1 (top right), α = 2.0 (bottom)

Boumediene Hamzi KFs and KMD for DS LIKE’23, 06/2023 70 / 73



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusions

• We used different variants of kernel flows to approximate chaotic dynamical
systems.
• We used the maximum mean discrepancy and extended kernel mode
decomposition to detect critical transitions.
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Other Activities on MLDS

▶ Special Issue on “Machine Learning and Dynamical Systems” in Physica D.
▶ Machine Learning and Dynamical Systems Seminar, hosted by the Alan

Turing Institute (London, UK), cf.
https://sites.google.com/site/boumedienehamzi/
machine-learning-and-dynamical-systems-seminar to join mailinglist.

▶ Possibly 4th Symposium on MLDS at the Fields Institute in Toronto in 2024.
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