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Epistemological context

How to analyze complex systems: Among the current approaches to analyze
complex systems

» Theory of Dynamical Systems allows to analyze complex systems when the
model is known. It offers nontrivial ways to analyze dynamical systems. It
has the status of Theory. Currently, it is limited to low-dimensional models.

» Machine Learning is concerned with algorithms designed to accomplish a
certain task, whose performance improves with the input of more data. It
allows the analysis of some very high-dimensional complex systems on the
basis of data when the model is not even known.

Current limitations: Mostly a set of techniques and algorithms. No
Methodologies. Theory still underdeveloped. It is not clear why the
algorithms work and what is their domain of applicability.

~~ It makes sense to combine Dynamical Systems and Machine Learning.
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Goal: Fill the gap between Machine Learning and Dynamical Systems in the
following directions

» Machine Learning for Dynamical Systems: how to analyze dynamical systems
on the basis of observed data rather than attempt to study them analytically
(it allows to extend the boundaries of the classical theory of dynamical
systems).

» Dynamical Systems for Machine Learning: how to analyze algorithms of
Machine Learning using tools from the theory of dynamical systems (allows
to give solid foundations to the existing methods and understand their true
potential and limits- identify the domain of applicability of the algorithms in
ML).
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Context

As pointed out by Steve Smale, the interaction between Dynamical Systems and
Learning Theory is an important problem?:
“Some years ago, Felipe (Cucker) and | were trying to find something
about the brain science and artificial intelligence starting from literature
on neural nets. It was in this setting that we encountered the beautiful
ideas and fast algorithms of learning theory. Eventually we were motivated
to write on the mathematical foundations of this new area of science.
| have found this arena to, with its new challenges and growing number
of applications, be exciting. For example, the unification of dynamical
systems and learning theory is a major problem. Another problem is to
develop a comparative study of useful algorithms currently available and
to give unity to these algorithms.”

IFelipe Cucker and Ding Xuan Zhou (2007), Learning Theory: An Approximation Theory
Viewpoint.
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Context

“Personal computing has developed to the point where in many cases it
ought to be easier to simulate a dynamical system and analyze the empir-
ical data, rather than attempt to study the system analytically. Indeed,
for large classes of nonlinear systems, numerical analysis may be the only
viable option. Yet the mathematical theory necessary to analyze dynami-
cal systems on the basis of observed data is still largely underdeveloped.”

J. Bouvrie and BH (2012), Empirical Estimators for Stochastically Forced Nonlinear Systems: Observability,
Controllability and the Invariant Measure, https://arxiv.org/pdf/1204.0563v1.pdf

Boumediene Hamzi KFs and KMD for DS LIKE'23, 06/2023 5/73


 https://arxiv.org/pdf/1204.0563v1.pdf

Outline

e Elements of Learning Theory and Function Approximation in RKHSs

e Probability Measures in RKHSs and the Maximum Mean Discrepancy

e Kernel Flows for Learning Chaotic Dynamical Systems: Parametric Kernel
Flows, NonParametric Kernel Flows, Irregular Observations, Partial Observations,
Sparse Kernel Flows, Hausdorff Metric based Kernel Flows.

e Learning and Detection of Critical Transitions for some Slow-Fast SDEs
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Summary of the Approach

e We assume that there is a ¢ : R” — H; x — z where H is an RKHS such that
we can perform an analysis (in general, but not necessarily, a linear analysis) in H
then come back to R”.

e The transformation ¢ is obtained from the kernel that defines the RKHS (in
general, it is not necessary to explicitly find ¢). In practice, we will use

$(x) = [d1(x) -+~ dn(x)] " with
9i(x) = K(x x(t:))

where K is a reproducing kernel and x(t;) are measurements at time t;,
i=1---,Nand N> n.

e Measurements/Data are used to construct the Hilbert Space where
computations become “simpler”.
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Reproducing Kernel Hilbert Spaces

e Historical Context: Appeared in the 1930s as an answer to the question: when is
it possible to embed a metric space into a Hilbert space ? (Schoenberg, 1937)

e Answer: If the metric satisfies certain conditions, it is possible to embed a
metric space into a special type of Hilbert spaces called RKHSs.

e Properties of RKHSs have been further studied in the 1950s and later
(Aronszajn, 1950; Schwartz, 1964; Wahba, 1990s; Smale, 2000s etc.)
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Reproducing Kernel Hilbert Spaces

e Definition: A Hilbert Space is an inner product space that is complete and
separable with respect to the norm defined by the inner product.
e Definition: For a compact X C R? and a Hilbert space # of functions
f: X - R, we say that H is a RKHS if there exists k: X x X — R such that
i. k has the reproducing property, i.e. Vfe H, f(x) = (f(-), k(-, x)) (kis called a
reproducing kernel).
ii. kspans H, i.e. H = span{k(x,-)|x€ X}.
e Definition: A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space H

with a reproducing kernel whose span is dense in H. Equivalently, a RKHS is a
Hilbert space of functions where all evaluation functionals are bounded and linear.
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Reproducing Kernel Hilbert Spaces

The important properties of reproducing kernels are

e The RKHS is unique.

o Vx,y e X, K(x,y) = K(y, x) (symmetry).

o > 11 aiagK(x;, x5) > 0 for a; € R and x; € X (positive definitness).

o (K(x,-),K(y,-))# = K(x,y). Using this property, one can immediately get the
canonical feature map (Aronszajn's feature map): ®.(x) = K(x, -).

e A Mercer kernel is a continuous positive definite kernel.

e The fact that Mercer kernels are positive definite and symmetric reminds us of
similar properties of Gramians and covariance matrices. This is an essential fact
that we are going to use in the following.

o Examples of kernels: k(x,X) = (x,X)? k(x,xX) =exp (- %)

k(x,x') = tanh(x(x,x) + 6).
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RKHS in Approximation Theory (aka Learning Theory)

e RKHS play an important role in learning theory whose objective is to find an
unknown function f: X — Y from random samples (x;, y;)|7 .

e For instance, assume that the random probability measure that governs the
random samples is p and is defined on Z:= X x Y. Let X be a compact subset of
R” and Y= R. If we define the least square error of fas & = [, (f(x) — y)?dp,
then the function that minimizes the error is the regression function f, defined as

f(x) = / yap(ylx), x€ X

where p(y|x) is the conditional probability measure on R.
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RKHS in Approximation Theory (aka Learning Theory)

e Since p is unknown, neither f, nor £ is computable. We only have the samples
s 1= (x;, yi)|",. The error £ is approximated by the empirical error &(f) by

£ =+ S () — i + Al

i=1

for A > 0, A plays the role of a regularization parameter.
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RKHS in Approximation Theory (aka Learning Theory)

e In learning theory, the minimization is taken over functions from a hypothesis
space often taken to be a ball of a RKHS H associated to a kernel K, and the
function fs that minimizes the empirical error & is

m m

£(x) =D GKxx) =D gay(x),

j=1 j=1
where the coefficients (cj)j";1 are obtained by solving the linear system
m
AmC;—FZK(X,‘,Xj)Cj:y,', i:]ﬂ”'ma
Jj=1

and f; is taken as an approximation of the regression function f,.
e We call learning the process of approximating the unknown function f from
random samples on Z.
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RKHS in Change Point Detection

e We will consider a sequence of samples xi, x2,- - , X, from a domain X

e We are interested in detecting a possible change-point 7, such that before 7, the
samples x; ~ P i.i.d for i < 7, where P is the so-called background distribution,
and after the change-point, the samples x; ~ Q i.i.d for i > 7 4+ 1, where Q is a
post-change distribution.

e We map the dataset in an RKHS 7 then compute a measure of discrepancy A,,.
e A, is small if P= Q and large if P and Q are far apart.

e We will use the maximum mean discrepancy (MMD)

MMD[#, P, Q] := sup {EJfx)] - E,[fy)]},

feH,||fl<1

as a measure of heteregoneity.
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Probability Measures in RKHSes

e Let H be an RKHS on the separable metric space X, with a continuous feature
mapping ¢ : X — H. Assume that k is bounded, i.e. sup k(x, x) < cc.

e Let P be the set of Borel probability measures on X'. We define the mapping to
H of P € P as the expectation of ¢(x) with respect to P, i.e.

up: P — H
P — [, d(x)dP(x) =: ux(P) (kernel mean embedding of P)

e The maximum mean discrepancy (MMD) between two probability measures P
and @ is defined as the distance between two such mappings

MMD(P, Q) = [[1x(P) = 1x(Q)l24,
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Probability Measures in RKHSes

e The maximum mean discrepancy (MMD) is defined as (Gretton et al., 2007)
MMD(P, Q) = |lup — 1all,
1 where x
= (B (k6 X)) + By (K, Y)) — 2By (k(x 1))

and X' are independent random variables drawn according to P, y and y are
independent random variables drawn according to @, and x is independent of y.
e This quantity is a pseudo-metric on distributions, i.e. it satisfies all the qualities
of a metric except MMD(P, Q) = 0 iff P= Q.
e For the MMD to be a metric, it is sufficient that the kernel is characteristic, i.e.
the map pp: P — H is injective. This is satisfied by the Gaussian kernel (both on
compact domains and on R?) for example.
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Probability Measures in RKHSes

¢ RKHS embedding;:

P— /,Lk(P) = ]EXNpk(-, X) S Hk

P — [Ewl (X)7 e 7E905(X)] e R®

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

- i
1 (P) = Ex k(- X)) I
L I
yee o =
)y —N ik (P) — 1 (@)1
MMD (P, Q) = || (P) — pu(Q) |y, = sup [E/(X) —E/(Y)]
JEH R S 9, =1
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Probability Measures in RKHSes

e For characteristic kernels, the MMD metrizes the weak- x topology on
probability measures

MMDy(Py, P) = 0 < Py~ P

e For characteristic kernels: convergence in distribution iff convergence in MMD.
e It is an Integral Probability Metric that can be computed directly from data
without having to estimate the density as an intermediate step.

e Given two i.i.d samples (x1, -+ ,Xm) from Pand (y1, -, ym) from Q, an
unbiased estimate of the MMD is

MMD? = ﬁ S ke x5) -+ Ky ) — K ) — kg )]
i
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Kernel Flows for Learning Chaotic Dynamical Systems
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Kernel Flows for Learning Chaotic Dynamical Systems

e Problem P : Given input/output data (x1,y1)," -, (xn, yn) € X X R, recover an
unknown function v* mapping X" to R such that u*(x;) = y; for i € {1,..., N}.

e In the setting of optimal recovery, Problem P can be turned into a well posed
problem by restricting candidates for u to belong to a Banach space of functions
B endowed with a norm defined as

f¢

el = supyess- 750 )¢( )dxdy)

and identifying the optimal recovery as the minimizer of the relative error

[lu— v

full?
where the max is taken over u € B and the min is taken over candidates in v B
such that v(x;) = u(x;) = yi.

min,max,
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Kernel Flows for Learning Chaotic Dynamical Systems

e The method of KFs is based on the premise that a kernel is good if there is no
significant loss in accuracy in the prediction error if the number of data points is
halved. This led to the introduction of

v —viIP
(v 2
which is the relative error between v*, the optimal recovery of u* based on the full
dataset X = {(x1,y1),--.,(xn, yn)}, and v° the optimal recovery of both v* and
v* based on half of the dataset X* = {(x;,y;) | i € S} (Card(S) = N/2) which
admits the representation

v = (V) AKX, )
with y* ={y; | i€ S}, ¥ = {x; | i € S}, A*= (©°)7}, 03, = K(x, x).
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Kernel Flows for Learning Chaotic Dynamical Systems

Given a family of kernels Ky(x, x') parameterized by 6, the KF algorithm can then
be described as follows :

1. Select random subvectors X® and Y? of X and Y (through uniform sampling
without replacement in the index set {1,..., N})

2. Select random subvectors X¢ and Y of X? and Y? (by selecting, at random,
uniformly and without replacement, half of the indices defining X?)

3. Let

Yo T Ky (X, X9) 1Y,

YETKp(XP, XP)—1YP”’

be the squared relative error (in the RKHS norm || - ||«, defined by Ky)

between the interpolants u® and u€ obtained from the two nested subsets of
the dataset and the kernel Ky

4. Evolve 0 in the gradient descent direction of p, i.e. 0 < 0 — §Vyp

p(0, XP, YP XE Y) =1~

5. Repeat.
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Kernel Flows for Learning Chaotic Dynamical Systems

o Let xi,..., X, ... be atime series in RY. Our goal is to forecast x,41 given the
observation of xg, ..., x,.

e We work under the assumption that this time series can be approximated by a
solution of a dynamical system of the form

Zk+1 = f'r(Zk, s Zhrig1)s

where 77 € N* and ' may be unknown.
e Given 7 € N*, the approximation of the dynamical can then be recast as that of
interpolating fI from pointwise measurements

fi(Xe) = Yifork=1,...,N

with Xy = (Xktr—1,- -+, Xk), Yk := Xktr and N=n— 7.
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Kernel Flows for Learning Chaotic Dynamical Systems

e Given a reproducing kernel Hilbert space of candidates for f, and using the
relative error in the RKHS norm || - || as a loss, the regression of the data (X, Yk)
with the kernel K associated with provides a minimax optimal approximation of fi
in . This interpolant (in the absence of measurement noise) is

1) = K(x X)(K(X, X)) 1Y

where X = (Xi,..., Xn), Y= (Y1,..., Yn), k(X X) for the N x N matrix with
entries k(X;, X;), and k(x, X) is the N vector with entries k(x, X;).

e Use different variants of Kernel Flows (KF) to learn the kernel K from the data
(X, Yx).
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Kernel Flows for Learning Chaotic Dynamical Systems

Assume the kernel K to be parameterized by 6. To update € in Ky, we minimize
one of the following metrics (different variants of KFs)

» Metric associated to the RKHS norm
Ye TK@(XC, XC)_1 Y,
YETKy(Xb, Xb)—1Yb

p(6, XP, Y XE Y°) =1

» Metric associated to Lyapunov exponents and minimize
PL = |/\max7N - )\max,N/2|
> Metric associated to the Maximum Mean Discrepancy (MMD) and minimize
puvo = MMD(S1, S2)

between two different samples of the time series.
» Metric associated to the Hausdorff distance and minimize

Prp = HD(ANa AN/Z)
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Kernel Flows for Learning Chaotic Dynamical Systems

e We use the kernel

| +aje 1 taze 7
}

— 2 I1x=yl13 TN
k(x,y) = agmax{0,1— Ix =2
0

=113

T aze sinz(a47r||xfy\|2)e_ o2 —+ Oé4| |X - y| |§
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Kernel Flows for Learning Chaotic Dynamical Systems

e Bernoulli map x(k+ 1) = 2x(k) mod 1

10 10 08
08 08 06
06
b6 04
i 04
02
02
02
00
00
00
0 50 100 150 200 0 5 100 150 200 0 25 50 75 100 125 150 175 200

Figure: Time series generated by the true dynamics, approximation using the learned
kernel and the kernel without learning for different initial conditions
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Kernel Flows for Learning Chaotic Dynamical Systems

e | orenz system

dx

4 s(y —x)

d

F); = IX—y—xz
Z—i = xy— bz

with s =10, r= 28, b=10/3.
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Kernel Flows for Learning Chaotic Dynamical Systems
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Figure: Time series generated by the true dynamics (red) and the approximation with the
learned kernel (blue) - x component in the left figure, y component in the middle figure,
z component in the right figure.
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Kernel Flows for Learning Chaotic Dynamical Systems
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Figure: Difference between the true and the approximated dynamics with the learned
kernel using p (red (first, third and fifth from the left)), with the initial kernel (green
(second, fourth and sixth from the left)). x-component in the two figures at the left,
y-component in the middle two figures, z-component in the right two figures.
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Kernel Flows for Learning Chaotic Dynamical Systems

20 o b D B 0 d0 6 B @

Figure: Projection of the true attractor and approximation of the attractor using a
learned kernel on the XY,XZ and YZ axes (first, third and fifth from the left), Projection
of the true attractor and approximation of the attractor using with initial kernel on the

XY,XZ and YZ axes (second, fourth and sixth from the left)
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Kernel Flows for Learning Chaotic Dynamical Systems
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Figure: True attractor (blue) and approximation of the attractor using a learned kernel
(red) [left], True attractor (blue) and approximation of the attractor using initial kernel

(red) [right]
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Kernel Flows for Learning Chaotic Dynamical Systems

o HYCOM: 800 core-hours per day of forecast on a Cray XC40 system

e CESM: 17 million core-hours on Yellowstone, NCAR'’s high-performance computing resource

e Architecture optimized LSTM: 3 hours of wall time on 128 compute nodes of the Theta supercomputer.
e Our method: 40 seconds to train on a single node machine (laptop) without acceleration

P -
S 9 HYCOM (PDE)  CESM (PDE) True (NOAA)
32

—— Predicted HdYCcoMm e CES| — True

0 25 50 75 100 a5 150 175
Week
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Kernel Flows for Learning Chaotic Dynamical Systems

True (NOAA Satellite): Kernel Flows
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Nonparametric Kernel Flows for Learning Chaotic

Dynamical Systems

e Write X := (Xi,...,Xn) and Y:= (Y4,..., Yn) for the input/output training
data. Our goal is to learn a kernel of the form

K¢(X7%) = K(d)(X? 1)7 QS()(v 1)) )

where K is a standard kernel and ¢ maps the input space into itself.
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Nonparametric Kernel Flows for Learning Chaotic

Dynamical Systems

e The warping of the input space ¢ satisfies the following ODE

{é(x, )= o(xt),t)

with
vx, t) =T(xq)N(q.9) g, and g=-V[p(q)],
where

» g corresponds to position variables in X'V starting from
q(0) = X = (X1, , Xn).

> [ is an operator/vector-valued kernel, (g, g) is an N x N matrix with entries
r(CIi, CIJ)-

> I(x,q)isalx N vector with entries ['(x, g;).

> p is the kernel flow loss associated with the input/output data (g, Y).
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Nonparametric Kernel Flows for Learning Chaotic

Dynamical Systems

e Using an explicit Euler scheme and regularizing with a nugget A > 0 leads to an
iteration of the form

Gnt1(X) = Pn(x) + eva(dn(X))-
with ¢o(x) = x.
e Writing X = (Xi,...,Xyn) for the training points and
Gn = On(X) := (0n(X1), ..., &n(Xn)), the discretized equations take the form

An+1 = qn — evp(qn)

and
Vn(X) = r(X) Qn)(r(qnv qn) + A/)_l(Qn+l - qn)/6
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Nonparametric Kernel Flows for Learning Chaotic

Dynamical Systems

Predicted s true trajectory, KF MMD
Predicted vs true trajectory, KF 500 000 iterations redicted vs frue frajectory.

10 i

—— True trajector 4

o 100 200 300 400 . _éan v —— True trajectory
—— Prediction 0 100 200 300 400 500
—— Prediction

(a) Time series (red) and the prediction (blue) (b) Time series (red) and the prediction
by the learned kernel with p (blue) by the learned kernel with ppmp

Figure: Prediction results for the Bernoulli map
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Deformations of the test space

. Original and warped data

— o
> T
= <
S ° < .
- Original train data
) 02 Original test data
- Warped train data
00 Warped test data
Xn Xn

Figure: Deformation of input for different iterations of the flow function ¢, (left) and
deformed final data (right).

Rho loss function MMD loss function

lterations

Figure: Convergence of the losses p and puywmp.
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Kernel Flows for Learning Irregularly-Sampled Time Series

e The above approach fails to be accurate for irregularly sampled series because it
discards the information contained in the ty.
e To address this issue, we consider the model

Xk+1 = F(sz Ay, ... y Xk—7T 415 Ak777+1)7

which incorporates the time differences Ay = t)11 — tx between observations.

e That is, we employ a time-aware time series representations by interleaving
observations and time differences.

e The proposed strategy is then to construct a surrogate model by regressing fi
from past data and a kernel Kj learned with Kernel Flows as described previously.
Note that the past data takes are Xy := (xk, Dk, - -y Xktr—1, Dprr—1), Yk = Xkt1
and N=n—r.
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Attractor reconstruction (left), Time series reconstruction (right) without
learning the kernel
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Kernel Flows for Learning Irregularly-Sampled Time Series

Second pimension Secand pimension

Figure: Reconstruction of the test time series of the Lorenz map with regular Kernel
Flows (left) and irregular KFs (regular).
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Approach with regular Kernel Flows (left), Approach with irregular Kernel Flows
(right).
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Kernel Flows for Learning Partially-Observed Dynamical

Systems

e Consider the dynamical system

x(k+1) = fx(K))

Il
| —
&
—_—~
R IR
| S

where f€ C(R" x R™ R™™M).

e We assume that we have access to measurements from the first n components
of the x—variable that we denote as x” and that the remaining m components,
that we denote as x™, are not observed, i.e. we only observe x"(1),...,x"(/). Our
goal is to forecast x(/+ 1) given the observation of x"(1),...,x"(/).

Boumediene Hamzi KFs and KMD for DS LIKE'23, 06/2023 44 /73



Kernel Flows for Learning Partially-Observed Dynamical

Systems

e This is equivalent to minimizing the following optimization problem w.r.t f,, f,
and the the unknown m—variables required in the representer formula.

N
min £ = (1], + 11l + A3 ((50:67) = XEa)? + (o) = X2)2),
i=1

.LetA:(ng"'7X7+1)vB:(Xg,v"'v/+1) ( (:7:) )

The minimizers of the loss £ are f,(-) = (-, C)(rl(C C) + A 1Id) 1A
fin(-) = T2(+, O)(M2(C, C) + At1,)~1 B which leads to the following reduced
optimization problem

mingAT(M1(C, C) + A" ) A+ BT(To(C, C) + A\ Hy) 1B
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Kernel Flows for Learning Partially-Observed Dynamical

Systems

Consider the Lorenz system

= a(y—x),
= X(p—Z)—y7
z = xy—pz

with 0 =10, p =28, = %. First, we consider the case where we have access to
the x and y variables but not z.

We follow the following steps: i.) find the auxiliary variable z,, ii.) use kernel
flows to learn the parameters of the kernel

—lx— I3
2
260

2\ —1 2
x—y x—y —llx—y
P U A S (SN A RS G L (FATY
02 02 262
10 i3 is

) — sin2 <7er—yH§/917) Ilx = I3 ) — sin? (wa—yII%/"u)
016 exp exp [ — +O0pexp | ———5—

2 2
01g 019 %

1
2 2(. T 2)2 2 (2 2 2\— 3 2 (2 2\ —0
Ko (x, ) :91exp< >+93 (x"y+63)" + 68 (03 +63Ix—yl5)" 2 +065 (65 + lIx—yl3) 7+
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Kernel Flows for Learning Partially-Observed Dynamical

Systems

We generate 200 data points using initial conditions x(0) = 0, y(0) = 0, z(0) = 0,
and sampling time t; = 0.01, and we use gradient descent with step size n = 10~
to solve the optimization problem to find the auxiliary variable z,.

For prediction, we started with a time delay 77 = 3 but the results were poor. By

increasing the time delay to 71 = 4, the results improve and are in the figures
below.
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

True (blue) vs. Prediction (red) of the x variable (top), True (blue) vs. Prediction (red) of the y variable (middle), True (blue) vs. Prediction (red) of the y
variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical

Systems

The errors between the true and approximated values over longer simulation
intervals are plotted in the figures below.

02

04

06

3 W00 00 .00 4000 5000

06

02

00

06

08

06

04

00

02

08

08

3 W00 200 ;0 400 5000

Boumediene Hamzi KFs and KMD for DS LIKE'23, 06/2023 49/73



Kernel Flows for Learning Partially-Observed Dynamical
Systems

Figure: Reconstruction from true data (blue) vs. approximation (red) of the attractor.
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Sparse Kernel Flows for Learning Chaotic Dynamics

e Consider a kernel of the form
m
Kso(xy) =D 07k y: 8)
i=1

e Sparsify Kz g by L1 regularization

ve Kgoye

+ A6l
vi Kaoy

L(3,0) = arg min 1-—

e We apply it to a database of 131 chaotic dynamical systems.
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Sparse Kernel Flows for Learning Chaotic Dynamics

We use the following kernel

—lx— I3 2( T 2\2 | 22 g2 N =% 22 2\ =85
— ) (x"y+83)" + 063 (83 +B3lx—vI3) " 2 + 67 (8 + Ix—¥I3)
1

2\ —1L 2
[Ix = yll Ix = yll
+9§ 1+72 +9§max 0,1772
82 82
7 8

.2 2 . 2 2
e (7 sin? (e lx — ynz/zsg)) " (7 lix — yug) \ B ew <7 sin? (7 lx — yHQ/ﬂu))

K(x, y) :6% exp <

8o P11 613

2 —lx =yl 2 (.2 2 -1
+ 0g exp — + 019 <515+515HX*}/”2) 2+
2814

-1
-8 IIx = yll2 lIx = yll2
0% (5%8 + llx = YH2) 71 03, <1 e + 03y max (0,1 —
ﬁlg [320

2 <*5i"2 (WHX*yllz/le)> ( lefsz)
+ 074 exp 5 exp [ —
B3 B23

p —sin® (w1 — ylla/Baa)
+ofgep | ———
Bag
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 1: Complex Ca?* oscillations

d
527 Vin = Va+ Vst key — kz
i =V, — V53— k
dty_ 2 3 (24
d
&3:5V4—V5—ea
where Vi, = Vo + V18, Vo =V, 2 \e—V &
in 0 10, V2 M2K§+22' 3 M3KT+me§+y2K‘;+a4’

_ aP z
Vs = Vs KP+ap Kotz
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Sparse Kernel Flows for Learning Chaotic Dynamics
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 2: Multiple interacting Chua electronic circuits
Equation:

d
Zx=aly— )

d +
—Vy=X— Z
dty y
d
2= b
a’ -
where
—m7X+Z m; — mi1) (Ix+ civr| — [x = ciyal)
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Sparse Kernel Flows for Learning Chaotic Dynamics

— — true value

Predicted MultiChua system, regular KF, delay: 3, lambda: 0 Predicted MultiChua system, regular KF, delay: 3, lambda; 2~ Prediction
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Sparse Kernel Flows for Learning Chaotic Dynamics

Index Name CaTwoPlusQuasiperiodic MultiChua
Regular KFs Ssirsi Fi)Fs Regular KFs SF;rsi };)Fs

coefficients 01 3.007 0.169 1.149 1.016

22 15.886 -3.287 1.558 1.834

63 2.260 0.495 1.131 0.965

6y 3.290 0.166 1.152 0.974

05 3.297 0.113 1.152 0.965

06 4.735 0.009 0.731 0.853

67 5.063 0 1.516 0.852

Og 0.947 0.769 0.162 0

) 3.055 0.294 1.378 1.013

010 2.404 0.505 1.307 0.962

011 3.892 0.204 1.575 1.017

612 3.895 0.133 1.578 1.019

613 6.611 0 1.204 0.941

614 8.462 -0.038 3.709 1.220

615 -2.451 7.375 0.538 0.232
error criterion SMAPE 0.006 3.40 x 1075 0.069 0.004

Hausdorff Distance 2.789 0.013 12.056 0.216
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Hausdorff metric based Kernel Flows for Learning Chaotic

Dynamics

e Consider a kernel of the form
Kso(x.y) = Ze ki(x, y: B)

e Sparsify K3 ¢ by L1 regularization and learn its parameters via cross-validation
of the Hausdorff metric between the reconstruction of the attractor from N points
and the reconstruction of the attractor from N/2 points

L(3,0) = arg r};ig HD(An, Any2) + All0]|1

e We apply it to a database of 131 chaotic dynamical systems.
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Hausdorff metric based Kernel Flows for Learning Chaotic

Dynamics

HiperGi Forced VanDerVol - Chenlee

Lorenz

Rossler

Figure: Comparison of four methods for the examples. In each plot, the green line
presents true trajectory and the red line present predicted trajectory, respectively.
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Hausdorff metric based Kernel Flows for Learning Chaotic

Dynamics
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Figure: Distribution of forecasting errors for different methods for all 133 dynamical
systems.

Boumediene Hamzi KFs and KMD for DS LIKE'23, 06/2023 60/73



Detection of Critical Transitions for MultiScale Systems
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Detection of Critical Transitions for MultiScale Systems

e Consider the fast-slow SDE

. 1 o1

= 7f' —
X1 € 1(X17X2)+ \ﬁnl(T)a
o = h(x,x) + oamp(7)

where f; € C(R?%;R) and f, € C(R?; R) are Lipschitz and 7, 7, are independent
white Gaussian noises.

e x; is a fast variable in comparison to the slow variable x;.

e The set Cy = {(x1,x2) € R?: fi(x1,x2) = 0} is called the critical manifold.
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MultiScale Systems

e The van der Pol model.
e The equations of the model are

. 1 27

X1 = E(X2*463X%(X1+5))+
. )

Xy = —5 — X1 +O’2’I72(t)

§=1,01=0.1,00 = 0.1, = 0.0L.
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MultiScale Systems
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MultiScale Systems

e Numerical Simulation
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Detection of Critical Transitions for MultiScale Systems

e We'll use the following Gabor wavelet as basis to build the reproducing kernel :

2.1 |w _ wA(=1)?
Gruwo(t) = ()" Ecos(w(t— T)+0)e &, t1,0eER w,a>0

This wavelet allows only to recognize modes of the form t — cos(w(t — 7) + 6) “a
la Fourier series”.

e In our context, we extend these wavelets to detect signals of the form
t = y(w(t — 7) + 0) for 27-periodic signal y € L2([0, 27]). This can be done using

2.1 2:772
Grwal®) = (50 Dytete=n) 0 TF trgeR wa>0

3
Given x, we construct the Gram matrix whose entries are

Kyrw0.6(5:t) = Xyirw.0(8)Xyirw.o(t), s te€(0,1]
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Detection of Critical Transitions for MultiScale Systems

e The reproducing kernel K, associated to y, we integrate Ky.; ., (s, t) w.r.t
T,w, 0 over their domain of definition :

Omax Wmax Tmax
K,(s, t) = / / / Kyrwo(s t)drdwdd, s tel0,1]
Omin Wmin Tmin

e For stochastic van der Pol, the function y and the corresponding kernel are

04 50 — new kernel
—— old kernel
02

0.0

02 30

-06

-08

-1.0 0
[I) lUIOD IUhD 30'00 40'00 50'00 HlI(]D -20 -15 -10 -05 00 o5 10 15 20

Figure: The function y used to build the kernel k(s, t) (left), Projection on the s—axis of

the plot of the kernel Kg(s, t) from vs. kernel K, (s, t) (right)
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Detection of Critical Transitions for MultiScale Systems

Van der Pol oscillator - Noise

Van der Pol oscillator - Reconstruction
4
vap Vap
R Noise

05

o m M

‘ ‘ 1 ‘
1 2 3 2 s 6 7 s °© 10

Time

Valie

Valse

s
Time

Figure: Reconstruction and noise for stochastic Van der Pol
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Detection of Critical Transitions for MultiScale Systems

e We define the energy of a sliding window W; = [ir, (i 4 1)7] of width 7 as
& = v/ K KoKy
where K7-(s,t) = Y, Ku,(s, t) + 0214 with o large and I, the identity matrix, v; is

the signal in the interval [ir, (i + 1)7], Ku.(s, t) = K(x(s), x(t)) with s, t € W;, and
Kw,(s, t) = 0 otherwise.
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Detection of Critical Transitions for MultiScale Systems

signal as a function of ¢ signal as a function of £

—— inner product as a function of tau —— inner product as a function of tau
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Figure: Energy & for a = 0.01 (top left) and oo = 0.1 (top right), o = 2.0 (bottom)
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Conclusions

e We used different variants of kernel flows to approximate chaotic dynamical
systems.

e We used the maximum mean discrepancy and extended kernel mode
decomposition to detect critical transitions.
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Other Activities on MLDS

» Special Issue on “Machine Learning and Dynamical Systems” in Physica D.

» Machine Learning and Dynamical Systems Seminar, hosted by the Alan
Turing Institute (London, UK), cf.
https://sites.google.com/site/boumedienehamzi/
machine-learning-and-dynamical-systems-seminar to join mailinglist.

» Possibly 4th Symposium on MLDS at the Fields Institute in Toronto in 2024.
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